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Stabilization of Neoclassical Tearing Modes by an Externally Applied Static Helical Field
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The effect of a static helical magnetic field on the nonlinear growth of the neoclassical tearing mode
(NTM) is investigated. The NTM is found to be stabilized by an externally applied helical field of
a different helicity if the field magnitude is sufficiently large, suggesting a very simple method for
stabilizing the NTM. The mechanism responsible for this stabilization is the decreased fundamental
harmonic pressure perturbation of the NTM in the presence of the helical field.

PACS numbers: 52.35.Py, 52.30.Jb, 52.65.Kj
1. Introduction.—For a high b tokamak plasma the per-
turbed bootstrap current can drive the magnetic island to
grow even if the tearing mode instability factor D0 is nega-
tive, leading to the neoclassical tearing mode (NTM) [1,2].
NTMs have been found experimentally to limit the maxi-
mal achievable pressure well below the predictions of ideal
magnetohydrodynamics (MHD) calculations and to lead
to the most severe limitation in the present day tokamaks
[3–7]. These modes are considered to be even more dan-
gerous for a tokamak reactor as the b value for the mode
onset becomes smaller with normalized ion gyro radius
(bN � r

�
i ) [7]. In recent years extensive efforts have been

devoted to understand the threshold for the onset of the
NTMs [7–9] and the nonlinear evolution of the single and
the double NTMs [10,11].

The stabilization of the NTM is therefore of great con-
cern. It had been shown in the recent experiments that
the NTM can be stabilized by localized electron cyclotron
current drive (ECCD) [7,12]. The corresponding theo-
retical studies have shown approximately the same results
([13] and references therein). It is found that 2% of the
plasma current by ECCD is required for stabilizing the
m�n � 3�2 mode with a 14% equilibrium bootstrap cur-
rent density fraction at the q � 3�2 surface, where q is
the safety factor. When scaled to a fusion reactor, 30 MW
radio frequency (rf) wave power will be required for the
stabilization of the same b value plasma [13]. If NTMs
with low m numbers (m � 2, 3, and 4) are expected to be
unstable for a higher b reactor plasma, then rf current drive
at several rational surfaces is needed and the total required
rf power will be quite significant. Therefore, to explore
other possible methods for the stabilization is important.

In the present paper the effect of a static helical mag-
netic field on the nonlinear evolution of the NTMs is in-
vestigated. It is found that the NTM can be stabilized by a
helical field of a different helicity if the magnitude of the
helical field is sufficiently large. This finding suggests a
very simple and cheap method for the stabilization. Both
analysis and numerical modeling have been carried out as
shown in the following.

2. Model and analytical theory.—The basic equations
describing the NTM are Ohm’s law, the equation of mo-
tion, and the pressure evolution equation,
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where B � B0t 1 =c 3 et and v � 2=f 3 et are the
magnetic field and plasma velocity, respectively, c and f

are the magnetic flux function and the stream function,
respectively, and the subscript 0 denotes an equilibrium
quantity. j � 2=2c and jb � 2g�

p
´�Bp�dp�dr are

the plasma and the bootstrap current density, respectively,
along the et (toroidal) direction, g is a function of the mi-
nor radius r , which becomes zero as r approaches the edge
assuming a collisional edge, ´ � r�R is the inverse as-
pect ratio, and Bp is the poloidal magnetic field. r is the
plasma mass density, m is the plasma viscosity, p is the
plasma pressure, xb and x� are the parallel and perpen-
dicular transport coefficients, respectively, =b and =� are
the parallel and the perpendicular gradient, respectively,
and Q and E are the heating power and the equilibrium
electric field, respectively.

Equations (1)–(3) are the coupled equations for study-
ing the nonlinear evolution of NTMs which result from
the expansion of MHD equations and keep the terms to
the order ´1�2 [1,2]. The toroidal coupling is neglected.
Equations (1)–(3) have been used to investigate the non-
linear evolution of the single and double NTMs [10,11].
We have solved Eqs. (1)–(3) simultaneously in order to
study the effect of an externally applied helical field. The
results of these numerical calculations are presented in the
next section. In the following we give a simple analytical
approach which allows an easier understanding of the ef-
fects shown by our simulations.

Since usually the transport time scale is much smaller
than that of the NTM growth, Eq. (3) can be simplified
as [9]

xb= ? �=bp� 1 x�= ? �=�p� � 0 , (4)

assuming there is no significant source inside the island.
The convective transport term is neglected in Eq. (4) which
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is valid for the NTM in a high temperature plasma. For
the case with only one Fourier component helical magnetic
perturbation, Eq. (4) has been solved in detail [9], and the
NTM is found to be more stable for a larger x��xb .

When there are two Fourier components of helical
magnetic perturbations, b1 � =c1 3 et�jB0j and b2 �
=c2 3 et�jB0j of different helicities, respectively, they
will lead to corresponding pressure perturbations p1
and p2. c and p are expressed in terms of Fourier series,
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c � c0�0�r, t� 1
X

cj�r , t� exp�i�mju 1 njj�� , (5)

p � p0�0�r, t� 1
X

pj�r , t� exp�i�mju 1 njj�� , (6)

where u and j are the poloidal and the toroidal angle,
respectively, the summation is over j with j � 1 and 2, and
mj and nj are, respectively, the poloidal and the toroidal
mode number of the perturbations bj .

It is found from Eqs. (4)–(6) that p1 is described by
xb�2F2
1p1 1 iF1p0
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the wave vectors of b1, � y�1 �

R
y cos�z � dz�p with the

integration from z � 0 to 2p, and z � m1u 1 n1j. In
Eq. (7) higher harmonic perturbations are neglected which
is valid if the magnitude of the perturbations is not too large
[9]. p2 is described by an equation similar to Eq. (7).

When c2 � 0 and p2 � 0, corresponding to the
case with only one Fourier component, it is found from
Eq. (7) that p1 � 0.3�w1�wc�2�≠p0�0�≠r� �r 2 rs1� for
jr 2 rs1j ø rs1 and w1 ø wc [9], where w1 is the mag-
netic island width induced by b1 at the rational surface
rs1 defined by q�rs1� � m1�n1, wc � rs1�x��xb�1�4 3

�´s1ss1n1�8�21�2, ´s1 � rs1�R, ss1 � rq0�q, and the sub-
script s1 denotes taking values at rs1. The parameter wc

is the so called critical island width [9]. When w1 # wc,
it can be found from Eq. (7) that the magnitude of the
perpendicular transport term is of the same order as that of
the parallel one near the rational surface, and the pressure
is not flattened inside the island.

When there are two Fourier component perturbations,
the pressure perturbations can be found in a similar way.
Away from the rational surfaces, Eq. (7) is dominated by
the first two linear terms and is reduced to

2F1p1 1 ip0
0�0b1r 	 0 , (8)

which lead to the outer region solution of p1. The form of
p2 is similar to Eq. (8).

In the inner region near the rational surface rs1 with
jr 2 rs1j ø rs1, p1 has a large radial derivative since
p1 � 1��r 2 rs1� as r approaches rs1, so that ≠p1�≠r ¿
≠p1�r≠u. The radial slope of p2 is much smaller than that
of p1 near rs1 under the assumption that rs2 is not close
to rs1. Usually the radial slopes of b1 and b2 of NTMs
are much smaller than that of p1. Thus, Eq. (7) is simpli-
fied as

2F2
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1 � 0 . (9)

It is seen that the effect of b2 on the radial profile of
p1 is similar to that of the perpendicular transport. When
jb2j ø jb1j, w1 ø wc, and jr 2 rs1j ø rs1, Eqs. (8)
and (9) lead to the result of the one mode case [9].
However, when jb1j ø jb2j, the balancing between the
third term and the first two terms in Eq. (9) leads to a new
critical width given by

wch � rs1

µ
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For jb2r j
2 ø 4�x��xb�, wch � wc. While for

jb2r j
2 ¿ 4�x��xb�, wch � 2rs1�b2r�´s1ss1n1�1�2 which

is increased by a factor of �0.5jb2r j�1�2��x��xb�1�4

from wc.
For w1 , wch, jr 2 rs1j ø wch and jb1j ø jb2j, it is

found from Eqs. (8) and (9) that

p1 � 0.3�w1�wch�2p0
0�0�r 2 rs� . (11)

Utilizing Eqs. (1), (2), and (11) and following the same
procedure of Ref. [9], the island growth equation is found
to be

I1
d
dt

�w1� � h

µ
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rs1j0s1w1

Bps1ss1w2
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∂
, (12)

where f is the equilibrium bootstrap current density frac-
tion at r � rs1 and I1 � 0.82. Similar to the perpendicular
transport, b2 leads to a larger threshold for the onset of the
NTM. When jb2r j

2 ø 4�x��xb�, Eq. (12) becomes the
same as Eq. (118) of Ref. [9] for the one mode case.

When b2 is an externally applied helical field and its
magnitude is sufficiently large, according to Eq. (12) w1
will decay due to the large critical island width wch. For
jb2r j

2 ¿ 4�x��xb�, the condition for the stabilization of
w1 by b2 is

jb2r j . b2rc � 0.49f´s1n1�rs1j0s1�bps1�
3 �w1�rs1���2rs1D0� .

With w1�rs � 0.04, rs1D0 � 23, f � 0.1, ´s1 � 0.15,
n1 � 2, and rs1j0s1�bps1 � 1, it is found that the NTM
will be stabilized if b2r � 2 3 1024. The required mag-
nitude of the helical field is much smaller than that of the
equilibrium poloidal field which is of the order 0.1B0t .

3. Numerical calculations.—For checking the analyti-
cal results, Eqs. (1)–(3) are solved simultaneously using
an initial value code TM. This code had been used to
simulate the nonlinear evolution of the single and double
NTMs [10,11]. For high m NTM, the saturated island
width obtained from TM agrees with the analytical result.
S � tR�tA � 5 3 106 and Sm � tR�tm � 10 are taken,
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where tA is the Alfvén time, tR � a2m0�h is the resis-
tive time, tm � a2�m is the viscous time, and a is the
minor radius. A constant xbtR�a2 � 109 is used. x� �
0.23a2�tR at the rational surface. A small x� chosen here
is to minimize the stabilizing effect from finite x��xb .

For the externally applied helical field not to result
in a magnetic island inside the plasma and considering
cm�n � rm inside the plasma when neglecting plasma re-
sponse, it is desirable to select the helical field mode num-
bers to be m�n , 1 with m � 1 or 2. Here the effect of
m�n � 2�4 static helical field on the m�n � 3�2 NTM is
studied. The m�n � 2�4 static helical field is introduced
in the numerical modeling by taking the boundary con-
dition c2�4�a� fi 0. q � 3�2 surface is at r � 0.575a.
In addition to the m�n � 2�4 perturbation, two Fourier
components (m�n � 0�0 and 3�2) are included for the
m�n � 3�2 mode, as this leads to approximately the same
results as if more harmonics are included [10].

For c2�4�a� � 0, the growth of the normalized
m�n � 3�2 island width, w 
 w3�2�a, is shown for
f � 0.021 (solid curve) and f � 0.016 (dotted curve)
in Fig. 1. The m�n � 3�2 island is unstable for larger
f and stable for smaller f, indicating that the D0 is
negative for the present q profile. When a m�n � 2�4
field is introduced at t � 0 by using the boundary condi-
tion C 
 a21c2�4�a��jB0j � 1024 and an initial profile
c2�4�r� � c2�4�a�r2, the time evolution of w is shown
for f � 0.048 (dashed curve) and f � 0.043 (dot-dashed
curve) in Fig. 1. For the same c2�4�a�, w3�2 decays for
smaller f but still grows for larger f.

In Fig. 2 the time evolution of w is shown for C �
0.5 3 1023 (solid curve) and 1023 (dotted curve) with
f � 0.21 and w3�2�t � 0� � 0.014a. For the same f and
initial island width, a larger c2�4�a� leads to the decay
of the 3�2 island. For smaller c2�4�a�, w still grows but
more slowly than that with c2�4�a� � 0. With a larger

FIG. 1. w versus the normalized (to tR) time t for c2�4�a� �
0 with f � 0.021 (solid curve) and f � 0.016 (dotted curve)
and for C � 1024 with f � 0.048 (dashed curve) and f �
0.043 (dot-dashed curve).
initial island width w3�2�t � 0� � 0.031a, w is shown by
the dashed curve in Fig. 2 for C � 1023. The dot-dashed
curve is for C � 0. It is seen that, with the same f
and c2�4�a�, w grows for a larger initial island width and
decays for a smaller one.

Test calculations have been carried out by taking the
m�n � 2�4 component field to be zero in calculating the
3�2 component of pressure. In this case no stabilizing
effect is observed. If all the other coupling terms between
m�n � 3�2 and 2�4 perturbations except the fourth term
in Eq. (7) are set to be zero in the numerical modeling,
the time evolution of w3�2 is essentially the same as that
including all the coupling terms, indicating our analysis is
correct.

The relation between the required m�n � 2�4 field
magnitude to stabilize the m�n � 3�2 mode and the
bootstrap current density fraction at rs1 is shown in
Fig. 3 for w3�2�t � 0� � 0.014a, where the solid (empty)
squares denote the unstable (stable) case. It is seen
that the required c2�4�a� for the stabilization increases
almost linearly as the local bootstrap current density
fraction increases in agreement with Eq. (12). Taking
rs1D0 � 2m1 � 23 [6], the numerical results agree well
with Eq. (12). With a larger initial island width, similar
results to Fig. 3 are found but a larger c2�4�a� is required
for the stabilization for the same f.

Reversing the phase between the 3�2 mode and the
2�4 helical field leads to the same results. Introducing
a poloidal plasma rotation into the calculation and there-
fore a relative rotation between the island and the helical
field, the result is found to be essentially not changed, in
agreement with Eqs. (10) and (12). When the additional
components like m�n � 6�4, 5�10, 8�12, 7�18 resulting
from the coupling between perturbations are included in
the modeling, the results are approximately the same as
that with only three Fourier components, m�n � 0�0, 3�2,

FIG. 2. w versus t for C � 0.5 3 1023 (solid curve) and
1023 (dotted curve) with w3�2�t � 0� � 0.014a. The dashed
curve is the same as the dotted curve except w3�2�t � 0� �
0.031a. The dot-dashed curve is for C � 0.
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FIG. 3. Stabilization diagram in the C-f plane, where the solid
(empty) squares denote the unstable (stable) case with w3�2�t �
0� � 0.014a.

and 2�4. With a larger x�, the 3�2 mode is found to decay
faster. The effect of the m�n � 2�6 or 2�8 helical field
on the m�n � 3�2 mode is found to be the same as that
of the m�n � 2�4 field. From the numerical modeling the
m�n � 2�1 NTM is also found to be stabilized by a suf-
ficiently large m�n � 2�4 or 2�3 helical field.

4. Discussion and summary.—The numerical and the
analytical results shown above indicate that the NTM
can be stabilized by an externally applied static helical
magnetic field due to the larger critical island width wch.
These results suggest that the NTMs are unlikely to cause
an enhanced transport by creating many small islands
at their corresponding rational surfaces because the less
unstable mode will be stabilized by the neighboring more
unstable one due to the same mechanism found here.
We have indeed found from numerical simulations that
a NTM is suppressed by another nearby more unstable
NTM, in agreement with the experimental observations
of the suppressing of one NTM by another of a different
helicity [14].

Previously there had been studies on the anomalous
transport caused by the ergodic magnetic field lines due to
multiple helicity magnetic perturbations. In these studies
the m�n � 0�0 pressure perturbation is of concern. In
our work, however, the fundamental harmonic pressure
perturbation of the NTM is important because it provides
the main drive for the NTM growth through the corre-
sponding perturbed bootstrap current. When the selected
helical field has no resonant surface inside the plasma,
p2 � ib2r�≠p0�0�≠r��F2 is approximately valid every-
where inside the plasma. From the transport equation for
the m�n � 0�0 pressure component similar to Eq. (7),
it can be found that the effect of a helical field on the
m�n � 0�0 component pressure is much smaller than
that on the fundamental harmonic pressure perturbation
near the rational surface of the NTM. In fact, a small
nonresonant helical field can cause a significant change
in p1 profile only around the rational surface due to the
2952
large local radial derivative of p1 there. Our numerical
calculation results also indicate that there is no significant
change in p0�0 with a small magnitude of the helical field
required for stabilizing the NTM.

It is seen from present results that even for a plasma
with a high fraction of bootstrap current, the NTM can be
stabilized by an externally applied static helical field with
its magnitude much smaller than that of the equilibrium
poloidal field. There are apparently great advantages in
using this stabilizing method because essentially no power
is required and the technology is simple. However, the
helical field can stabilize only the NTMs driven by the per-
turbed bootstrap current (negative D0) rather than the con-
ventional tearing mode instability driven by an unfavorable
current density gradient (positive D0). For fully controlling
the tearing modes’ instabilities and the disruptions, another
method like localized ECCD is also necessary. The effects
of diamagnetic drift and toroidal mode coupling are ne-
glected in the present work. However, toroidal mode cou-
pling is usually important between m�n and �m 2 1��n
or �m 1 1��n modes, and one can choose the helical field
mode numbers to be m�n ø 1, so that �m 2 1��n or
�m 1 1��n components are not resonant with the NTM.
The inertia term r�v ? =�=2f in Eq. (2) is found to be
destabilizing but not sufficient to destabilize the NTM.

In summary, in the present paper the NTM is found to be
stabilized by an externally applied static helical magnetic
field of a different helicity if the magnitude of the helical
field is sufficiently large, suggesting a very simple method
for stabilizing the NTM. The stabilization is due to the
increased critical island width by the helical field.
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