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Experimental Real-Time Phase Synchronization of a Paced Chaotic Plasma Discharge
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Experimental phase synchronization of chaos in a plasma discharge is studied using a phase variable
lift technique (i.e., phase points separated by 27 are not considered as the same). Real-time observation
of synchronized and unsynchronized states is made possible through a real-time sampling procedure.
Parameter space regions of synchronization and unsynchronization are identified, and a set of equations

is suggested to model the real plasma circuit.
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Given a chaotic oscillator for which an angle coordi-
nate can be suitably introduced as a state space variable, it
is often the case that the phase of this oscillator synchro-
nizes with the phase of an external periodic perturbation,
or pacer [1]. That is, the phase difference between the
chaotic oscillator and the pacer remains bounded by some
appropriate constant fraction of 27 for all time, depend-
ing on the values of the amplitude and frequency of the
pacer [2]. In this phase synchronized state, the oscillator
remains chaotic, but its phase is in step with that of the
pacing signal.

Phase synchronization is an important feature associ-
ated with chaos in a number of situations including com-
munication using the natural symbolic dynamics of chaos
[3], lasers [4], paddlefish electrosensitive cells [5], cardiac
muscle pacing [6], coupled chaotic neurons [7], and plas-
mas [8]. In particular, plasma light intensity oscillations,
often called striations, have been observed since the early
days of plasma discharges. More recently, the chaotic na-
ture of these oscillations (period doubling route to chaos
and current bifurcation, for example) has been studied both
experimentally and numerically [9]. Much effort has been
devoted to the control of the chaotic behavior of gas dis-
charges, either by varying different parameters such as the
voltage, load resistance, and pressure, or by driving the
plasma with periodic external sources [10].

In this Letter we present experimental results of real-
time phase synchronization of chaos. To the best of our
knowledge, this is the first real time demonstration of phase
synchronization of a chaotic plasma discharge tube subject
to the action of a periodic wave generator. Under certain
conditions, the motion of the chaotic attractor constructed
from current intensity measurements is such that the tra-
jectory of the system continually circulates around one of
the Cartesian axes. In this case, an angle coordinate can
be introduced as a state space variable and regarded as
the oscillator phase. The power spectrum of the signal
is broad with a peak clearly indicating the existence of a
dominant frequency [8]. Paced with a sinusoidal voltage
with amplitude 0.4 V (small compared to the 850 V ap-
plied across the tube) and frequency close to the dominant
frequency of the plasma, the phase of the system locks
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up for long time intervals with the phase of the sinusoidal
signal. Our study uses a “lift” of the oscillator phase vari-
able where points separated by 277 are not considered as
the same. For example, the xy projection of the attrac-
tor of the Rossler system x = —(y + z),y = x + 0.25y,
z = 0.90 + z(x — 6.0) resembles a smeared circle with
the orbit continually circulating around the z axis. Tra-
jectory stroboscopic surfaces of section taken at the domi-
nant frequency of the oscillator are depicted in Fig. 1(a) as
dots scattered all over the attractor due to phase diffusion
[2]. However, if we add the term A sin27r¢/T to the right-
hand side of the second Rossler equation, with appropri-
ate values for the amplitude A and frequency f = 1/T,
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FIG. 1. (a) Projection of the Rossler attractor in Cartesian co-
ordinates, and (b) cylindrical coordinates. In both cases, dots
correspond to phase unsynchronization and empty circles corre-
spond to phase synchronization.
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the phase of the oscillator synchronizes with the phase of
the pacer. Stroboscopic sampling in this regime is shown
in Fig. 1(a) as open circles, confined into a small region
of the attractor due to phase synchronization. A different
view of this phenomenon can be obtained using cylindrical
coordinates with the transformation (x,y,z) — (r, ¢,z),
where r = /(x2 + y2 and ¢ = arcsin(y/r). By regard-
ing ¢ as continuous in time, points separated by 27
are shown 27 apart along the angle coordinate real line.
The phase difference between the oscillator and the pacer,
0 = ¢ — 27t/T, also continuous in time, is defined on
the real line —oo << § < + (rather than on the circle
0 = 0 = 2). This phase lift allows us to see phase syn-
chronization as a chaotic attractor with extension in 6 less
than 27. Stroboscopic sampling of the unpaced system
generates points lying on a branched manifold that spreads
along the 6 real line, shown as gray dots in Fig. 1(b).
Stroboscopic sampling of the paced system also generates
points lying on a branched manifold, but these points do
not fill the entire manifold. In the synchronized state, the
strobed attractor is localized within a small interval in
as indicated by the open circles in Fig. 1(b).

The phase lift technique briefly described above is now
applied to our experimental realization depicted in Fig. 2.
It includes an unmagnetized plasma produced in a sealed
glass cylindrical envelope with a central capillary region
and a wider diameter at the ends where the electrodes are
located (Geissler tube). The tube is filled with spectroscopi-
cally pure helium gas [11]. The anode and the cathode of
the tube are connected to a high dc voltage (850 V) through
a current limiting resistor R = 30 k(). In parallel with the
resistor, a capacitor C = 3.5 pF cuts out the high voltage
and a transformer picks up a low amplitude (0.4 V) pac-
ing sine wave from a function generator. The signal output
is provided by a current probe. After amplification, the
current is passed in parallel to an analog derivative circuit,
a PC based GPIB controller CAMAC crate, and an oscil-
loscope. For the data acquisition, we use a LeCroy 6810
Wave Form Recorder. The attractor can be viewed real
time on the oscilloscope by plotting the raw signal out-
put versus its analog derivative. The Lyapunov spectrum
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FIG. 2. Schematic representation of our experimental setup.
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of the acquired signal provides a quantitative measure of
the system sensitivity to small perturbations. For the ex-
perimental setup as above, with a voltage across the tube
of 850 V and no pacing, we obtain A; = 0.36, A, = 0.00,
and A3 = —0.74, for a sampling interval of 5 us [12]. The
corresponding Lyapunov dimension [13] is d; = 2.49.
One way of verifying phase synchronization is by ac-
quiring a long signal with the wave generator off, recon-
structing the attractor, and treating the time series data in
the same manner as done above for the Rossler system.
The power spectrum of the signal is wide with a dominant
frequency of 6960 Hz. We use this frequency to take stro-
boscopic surfaces of a section of the (unpaced) signal and
plot the result in Fig. 3(a) as dots on top of the attractor
(gray continuous line). Notice the spread of points all over
the attractor, a consequence of the phase unsynchronized
state of the system. However, an entirely different result is
obtained when the plasma is paced with a sine wave with
frequency of 6960 Hz and amplitude of 0.4 V. The same
stroboscopic procedure described above produces points
restricted within a small region of the attractor as denoted
by the open circles in Fig. 3(a), indicating phase synchro-
nization. Following exactly the same steps as above for the
Rossler numerical example, we move from Cartesian coor-
dinates in Fig. 3(a) to cylindrical coordinates in Fig. 3(b)
by applying the transformation (x,y,z) — (r, @,z), etc.
The unpaced plasma attractor along the 6 real line is
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FIG. 3. (a) Projection of the plasma attractor in Cartesian co-
ordinates, and (b) cylindrical coordinates. In both cases, dots
correspond to phase unsynchronization and empty circles corre-
spond to phase synchronization.
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represented by the gray dots in Fig. 3(b) [14]. This corre-
sponds to a phase unsynchronized state of the plasma de-
picted by the spread of points along the 6 line. An identical
procedure applied to the paced plasma generates the points
plotted as open circles, in this case concentrated within a
small region around # = 7. This localized strobed at-
tractor is a representation of the synchronized state of the
paced plasma.

Another way of verifying phase synchronization, in this
case real time, is by sampling the measured signal of the
paced plasma with a sampling rate equal to the dominant
frequency of the signal (same as the pacer frequency). This
is achieved by using a PCI-MIO 16E4 National Instruments
board connected to a computer, with two programs running
simultaneously: one shows the power spectrum of the sig-
nal and the other shows the attractor. We tune the wave
generator to the frequency given by the peak in the power
spectrum (6960 Hz in this case) after which we sample the
attractor at the same frequency. The image displays dots
concentrated within a small region shown in Fig. 4(a) for
the phase synchronized regime (amplitude A = 0.4 V), as
opposed to dots spread over a larger region shown in Fig.
4(b) for phase unsynchronization (amplitude A = 0.1 V).

This diagnostics for verifying phase synchronization
provides us with a useful tool for checking, in real time,
the regime corresponding to different values of pacer
amplitude A and pacer frequency f. Figure 5 shows
parameter space (A, f) regions of phase synchronization
(open circles) and phase unsynchronization (filled circles)
that were determined using this technique. The synchro-
nized states within the tongue are very stable for long
periods of time. Notice that the study of Ref. [2] names
unsynchronization the states where the system sustains
epochs, possibly long, of synchronized state interrupted
by short intervals where the phase of the pacer undergoes
a 27 slip behind (or ahead of) the oscillator [15]. This
is not the case in our experimental system, except for a
few points in the neighborhood of the boundary between
synchronized and unsynchronized states of Fig. 5. The
phase unsynchronization region represented in Fig. 5
(filled circles) corresponds to states of the system where

our measurements do not detect epochs of synchronization
separated by short intervals of 27 phase slip. These
are states where the plasma frequency seems to be not
correlated with the periodic pacing wave and the sampled
points spread all over the attractor [dots of Fig. 3(a)].
However, a behavior somewhat similar to the numerical
results of Ref. [2] is observed at the boundary between
synchronization and unsynchronization regions. We no-
ticed a few cases in which the system stays synchronized
for a while, becomes unsynchronized, and goes back to
synchronization again [16].

A precise mathematical model for our plasma system
requires a detailed and comprehensive study of the com-
plicated discharge kinetics. Still, we can treat the plasma
dynamically as a nonlinear circuit element, and produce
a set of three differential equations with two currents and
one voltage as variables. This is consistent with present
and previous observations showing low dimensionality in
plasmas [9—11], indicating that the system should be de-
scribed by a set of autonomous differential equations with
at least three independent variables. The circuit depicted
in Fig. 2 behaves as an electrical relaxation oscillator due
to the presence of the capacitor C, and of the Geissler dis-
charge tube with a nonlinear characteristic V(). We model
this nonlinear element as an idealized voltage-current char-
acteristic that consists of a broken line with two negative
slopes. In our idealized element, we consider only the re-
gion of luminous discharge, starting at small currents (mi-
croamps which we approximate as zero). After ignition,
the concentration of free charge carriers builds up lead-
ing to a current intensity increase a few orders of mag-
nitude. The voltage necessary to sustain the discharge
drops accordingly, and the running point of the system
jumps to a higher current. Here the system evolves on
the second region of the characteristics with a less steep
negative slope. The inductance L supplies more feedback
into the circuit [17], and the inductance Lp accounts for
both the parasitic inductance and inertial effects within
the tube. We apply Kirchoff’s law on two loops of the
circuit shown in Fig. 2: the plasma-resistor-source loop
and the resistor-capacitor-inductor loop. The resulting

-1.04

-2.0-

_3~3_| 1 1 1 1 1
-1.1 0.0 0.5 1.001.2

(a)

'
-0.5

-3.35 . ;

i P '
=11 -0.5 0.0 1.0 1.2

i
0.5

(b)

FIG. 4. Real time experimental observation of (a) phase synchronization with pacer amplitude A = 0.40 V, and (b) phase unsyn-

chronization with pacer amplitude A = 0.10 V.
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FIG. 5. Amplitude A and frequency f values for phase
synchronized plasma (open circles) and phase unsynchronized
plasma (filled circles).

equations are Lp 4t = E — RI, — Vp(I)) and L% =

RI, — f Ié dt, where the integral term is identified with
the voltage across the capacitor. We write v = — [ Ié dt,

and the time derivative of v provides us with a third equa-

tion ‘2—1; = —%3. Straightforward algebra yields x = % —

alx —y) — g Vplx), y=x —y + z, and z = — By,
where x = I,y = I3,z = =i,,8=ﬁ,and
Vp(x) =0 for x <0
= 1000 + mx for 0 =x <2.6 mA
= 1000 + mox + 2.6(m; — mg) for x = 2.6 mA.

The numerical values corresponding to our experiment are
L =32mH, Lp =4 mH, C =3.5pF, E =850V, and
R =30 kQ. The slopes are m; = —7.46 V/mA, and
mo = —136.53 V/mA. These equations, as presented, are
similar to the equations of the Chua circuit [18], and pro-
duce a single spiral Rossler-like attractor. In a future pub-
lication [16], we provide a more detailed analysis of the
model and its connection with the real experimental setup.
This idealized model, for example, does not take into ac-
count the hysteretic behavior of the current /—voltage V,
characteristic. It is well known that dc glow discharges
produced in gases at low pressure, or thermoionic dis-
charges, show an oscillatory behavior when their running
point is on the negative slope of the voltage-current char-
acteristic [19].
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