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Chiral Three-Nucleon Forces from p-wave Pion Production
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Production of p-wave pions in nucleon-nucleon collisions is studied according to an improved power
counting that embodies the constraints of chiral symmetry. Contributions from the first two nonvanishing
orders are calculated. We find reasonable convergence and agreement with data for a spin-triplet cross
section in pp ! ppp0, with no free parameters. Agreement with existing data for a spin-singlet cross
section in pp ! pnp1 constrains a short-range operator shown recently to contribute significantly to
the three-nucleon potential.
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The use of (approximate) chiral symmetry of QCD to
determine the form of the low-energy effective Lagrangian
has proven to be a powerful aid to the understanding of
strong interaction physics [1]. It has long been known
[2–4] that the use of chiral symmetry for pion-nucleon
(pN) scattering leads to a qualitative understanding of
the pion-ranged part of the three-nucleon force, believed
to produce important effects in nucleon-deuteron (Nd)
scattering [5] and few-nucleon bound states [6]. Yet, dis-
crepancies between theory and experiment (for Ay in Nd
scattering [7] and for excited levels in bound states [8]) re-
main which have been widely attributed to unknown three-
nucleon forces. A novel three-nucleon force, expected on
the basis of power counting arguments, involves the ex-
change of a pion between one nucleon and two others in-
teracting via short-ranged forces [3]. This force can indeed
affect Nd scattering at a currently observable level, and
thus potentially resolve the remaining discrepancies [9]. It
depends on a pion-two-nucleon interaction of a form de-
termined by chiral symmetry, but strength determined by
parameters, di of Eq. (2), not fixed by symmetry. We ar-
gue here that the production of p-wave pions in nucleon-
nucleon (NN) scattering offers a unique opportunity to
determine di [10].

In the last few years, the various NN ! NNp reactions
have been studied both experimentally and theoretically
[11], with a focus on near-threshold energies. The first
high-quality data concerned the total cross section, and
most theoretical analyses have concentrated on h & 0.4, a
region dominated by the Ss state. (Final states are labeled
by Ll with L and l being the relative angular momentum
of the nucleon pair and the pion with respect to the two-
nucleon center of mass, respectively; h is the maximum
pion momentum in units of the pion mass, mp ). Many
different mechanisms are expected at these kinematics:
heavy meson exchanges [12], (off-shell) pion rescattering
[13,14], excitations of baryon resonances [15], and pion
emission from exchanged mesons [16].

The pion dynamics are largely controlled by chiral
symmetry constraints, and the hope that the use of chiral
perturbation theory (xPT) would yield insights led to the
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use of tree-level xPT to calculate the cross sections close
to threshold [17–21]. A few calculations to one loop
order, carried out using the heavy baryon formalism, have
appeared [22]. According to Ref. [23], the large momenta
of relevance in the pion production makes that particular
formalism inappropriate for the present problem. How-
ever, the results of Ref. [22] can be viewed as a rough
estimate of the actual loop contributions. Reference [17]
emphasized that the diverse contributions to the Ss
final states can be ordered in powers of

p
mp�MQCD ,

where MQCD � 1 GeV is the typical QCD mass scale.
The implication of this relatively large parameter is that
loop diagrams enter at next-to-leading order in s-wave
pion production. Thus, a test of the convergence of the
series is hindered. We shall show that such difficul-
ties are not present for the case of p production in p
waves (h � 1), because the production proceeds through
leading-order operators better determined from other
processes.

Our arguments rely on the use of symmetries. One
may obtain the results of QCD by using the most general
Lagrangian involving the low-energy degrees of freedom
(pion p , nucleon N , and delta isobar D) which has the
same symmetries as QCD. These are approximate chi-
ral symmetry, parity, and time-reversal invariance. Chiral
symmetry plays a crucial role in low-energy processes be-
cause it demands that, in the chiral limit where the quark
masses go to zero, the pion interactions contain deriva-
tives, which are weak at small momenta, Q. Because the
quark masses are small, any nonderivative pion interac-
tions are also weak. Although the nucleon mass mN is
not small, it plays no dynamical role at low energies. The
delta isobar can be excited, but its mass difference to the
nucleon, dm � mD 2 mN , is not large. For processes in
which Q � mp it is convenient to introduce the “chiral
index” of an interaction Dx � d 1

f
2 2 2, where d is the

number of small-scale factors, that is, derivatives, mp , and
dm; and f is the number of fermion field operators. Chi-
ral symmetry implies that Dx $ 0 [24]. Our interaction
Lagrangian is given, using an appropriate choice of fields,
by the expressions [25,26]
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and [3]
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where c̄4 � c4 1
1

4mN
. The terms denoted by “· · ·” in-

clude Hermitian conjugates, s-wave pN scattering terms,
and terms of higher powers in pion fields. Our principle
aim is to determine the parameters di � O �1�f2

pMQCD�,
which determine the desired three-nucleon force. The ci

have been determined from pN scattering at tree level
(c

�tree�
3 � 23.90 GeV21 and c

�tree�
4 � 2.25 GeV21 [27])

as well as to one-loop order (c
�loop�
3 � 25.29 GeV21 and

c
�loop�
4 � 3.63 GeV21 [28]). Since we treat the delta iso-

bar explicitly, we need to subtract its contribution from
these values of ci [29]. This prescription leads to c

�tree�
3 �

21.5, c
�tree�
4 � 1.1 and c

�loop�
3 � 22.95, c

�loop�
4 � 2.5, all

given in GeV21. As will be established below, up to next-
to-leading order, the di , which support only S ! Sp tran-
sitions, are the only undetermined parameters in p-wave
pion production.

The next step is to extend the power counting of
Ref. [17] to the region h � 1, where the outgoing pion
has energy v � O �mp � and momentum j �qj � O �mp �,
and the two nucleons in the final state have momentum
j �p0j � O �mp � and total energy p00 � O �m2

p�mN �.
The unique difficulty of using xPT for pion pro-
duction is that the entire pion energy is supplied by
the relatively large momentum of the initial nucle-
ons, j �pj � O �

p
mNmp �. Note that the nonrelativis-

tic approximation holds, as p4�8m3
N � m2

p�mN ø
mp � p2�2mN .

The scales of momenta and energy are not the same,
so it is simpler to count powers of the small scales in
time-ordered perturbation theory. Equivalently, one first
integrates over the time component of loop momenta in
covariant diagrams. In this case, an intermediate state is
associated with an energy denominator 1�E, a loop with a
Q3��4p�2, a spatial (time) derivative with Q (E), and a vir-
tual pion vertex with 1�E1�2 from wave function normal-
ization. For N , E � Q2�mN , for D, E � Q2�mN 1 dm,
and, for p , E �

p
Q2 1 m2

p .
Final-state interactions are those which occur after the

emission of the real pion. In this case, the nucleons have
typical Q � mp . The energies of intermediate states con-
taining a p or D can be E � mp , but otherwise E �
m2

p�mN . The sum of “irreducible” subdiagrams where
all energies are O �mp � is by definition the NN potential,
which is then amenable to a xPT expansion. The sum
2906
of “reducible” subdiagrams produces the final-state wave
function jcf	.

In contrast, all intermediate states occurring before
the radiation of the real pion are characterized by loop
momenta �

p
mNmp . For these kinematics, we find

that any additional loop requires at least (i) one more
interaction—pion exchange or shorter range—with an
associated factor no larger than 1�f2

p ; (ii) a volume
integral with an associated factor of �

p
mpmN �3��4p�2;

and (iii) an additional time slice. If the additional
time slice cuts a pion line, a factor of 1�

p
mpmN

comes in, and the overall extra loop factor is at least
1

f2
p

��
p

mpmN �3��4p�2� �1�
p

mpmN � �
mp

mN
, that is, a

suppression by two powers of the expansion parameter. If
the additional time slice does not cut a pion line, a factor
of 1�mp appears, and there is a relative enhancement ofp

mN�mp . Integrals over two-nucleon states typically also
have enhancements by factors of p from the unitarity cut.
Thus we resum those diagrams that differ by the addition
of interactions between the initial nucleons, and the effects
are contained in an initial state wave function jci	.

These considerations yield a pion production amplitude
T � 
cf jKjci	. Both the kernel K and jci,f	 can be ob-
tained from the chiral expansion, but the currently available
jci	 do not yield an accurate fit to the measured NN scat-
tering phase shifts. Therefore we use a phenomenological
coupled-channel (NN , ND, DD) model [30] fitted to NN
scattering.

According to these counting rules, loop contributions
enter at next-to-leading order for s-wave pion production.
However, the situation is much better for p-wave produc-
tion. The leading contributions are displayed in Fig. 1.
At lowest order [O �1�, apart from overall factors] there
are contributions from the direct production off the nu-
cleon and off the delta, where all vertices are from L �0�

[Figs. 1(i) and 1(ii)]. At next-to-leading nonvanishing or-
der [O �mp�mN �], there are four types of contributions.
First, there is a recoil correction to the direct produc-
tion. Second, there are rescattering diagrams that proceed
through the seagull vertices in L �1� proportional to 1�4f2

p

(Galilean correction to the Weinberg-Tomozawa term), c3,
and c4 [Fig. 1(iii)]. Third, there is a rescattering through
the Weinberg-Tomozawa term, where the primary produc-
tion vertex is proportional to the external pion momentum.
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FIG. 1. Lowest-order contributions to p-wave production.
Diagrams at O �1� are (i) and (ii), and of O �mp�mN � are (iii)
and (iv). A solid (dashed) line denotes a nucleon (pion), and
a double line a D. Interactions from L �0� (L �1�) are denoted
by a dot (circled dot). Diagrams with a D in the final state are
also included.

Fourth, there are short-range p�NyN�2 interactions pro-
portional to d1 and d2 [Fig. 1(iv)]. Diagram 1(iv) and
most of the rescattering diagrams contribute to charged-
pion production only.

With our theory in place, we consider the available
pion production database. This has been enriched recently
by very accurate determinations of spin observables at
0.5 & h & 1 for pp ! ppp0 [31], pp ! pnp1 [32],
and pp ! dp1 [33]. It is useful to describe the total
cross section in terms of components 2S11sm, where S
is the initial NN spin with projection m along the direc-
tion of the incoming momentum. The 2S11sm can be
expressed as linear combinations of the total cross sec-
tion and the double polarization observables DsT and
DsL [31].

We now use the feature of Eqs. (2) that di , the only un-
determined parameters at O �mp�MN �, support only S !
Sp transitions. Therefore, we may test convergence for
p-wave production, by using an observable in which the
lowest contributing p partial wave is p and the initial and
final nucleons are not both in S states. Such an observable
exists, namely, the 3s1 cross section in neutral-pion pro-
duction with Pp as the lowest partial waves contributing.
While the ratios between double polarization observables
and the total cross section, DsT �stot and DsL�stot, have
recently been accurately measured at IUCF [31], the total
cross section is known to a much lesser accuracy (see the
compilation of Ref. [34]). To determine the error of the to-
tal cross section, we simply take the total spread of the data
as the error band. We defer a more detailed analysis un-
til it can benefit from the soon-to-be-available [35] much
better data.

In p-wave production the lowest-order loop contribu-
tions enter one order higher, at O ��mp�mN �3�2�, than the
rescattering terms of Fig. 1, and are ignored. Besides the
coupling constants of the pion to the baryon fields, the only
parameter that enters is c3. We will use both values given
above to get an estimate of loop effects on the final result.

The predictions of xPT are compared to the data in
Fig. 2. Up to values of h � 0.7, the data is well described.
Deviations at higher energies might be due to higher par-
tial waves entering, and/or to higher-order p-wave
contributions. In any case, we see that subleading correc-
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FIG. 2. Chiral perturbation theory predictions for 3s1 in the
reaction pp ! ppp0. Lowest order (long-dashed line), lowest
order plus recoil contribution (dot-dashed line), and next-to-
leading order using c

�loop�
3 (solid line) and c

�tree�
3 (dotted line)

are shown. Data are from Refs. [31,34].

tions are smaller than leading contributions throughout the
range h & 1.

We next consider the amplitude for the 1S0 !
�3S1 23 D1�p transition, denoted a0, which has recently
been extracted from the reaction pp ! pnp1 [36]. The
loop corrections are again expected to be small, but the
number of rescattering diagrams is larger, since isospin-
odd operators [the recoil correction to the Weinberg-
Tomozawa term as well as the c4 term of Eq. (2)]
enter. The striking feature of a0 is that interactions
proportional to the di’s also contribute. Because there
seems to be reasonable convergence in the p waves,
we assume that they can be reliably computed and
that we can attribute any deviation between theory and
experiment to the effects of the terms involving the
coefficients di . The contact interactions enter as the
linear combination d1 1 4d2. Thus there is one unknown
parameter to be fixed by the data. On the basis of dimen-
sional analysis, we expect d � 1

5 �d1 1 4d2� �
d

f2
pMQCD

with d � O �1�.
Our result for a0 is shown in Fig. 3. We find a destruc-

tive interference between direct nucleon and delta contribu-
tions that makes a0 small and more sensitive to subleading
terms. For the ci parameters, we employ the values ex-
tracted from the tree-level fit to pN scattering (c

�tree�
i ). We

use dipole form factors; to make contact with Ref. [9], we
employ cutoff parameters L � 1 GeV for diagrams con-
taining pion exchange and L � mv for the contact inter-
actions. The result for d � 0 is not in disagreement with
data, whereas a value of d � 1 leads to a serious disagree-
ment with experiment. In Ref. [9], d � 20.2 was shown
to yield an important contribution to Ay in Nd scattering
at energies of a few MeV. Using d � 20.2 here is also
consistent with the pion production data.

In contrast to 3s1, the result for a0 is quite sensitive to
the cutoff parameter used in the rescattering contribution,
because the momentum range scanned by the c4 term is



VOLUME 85, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 2 OCTOBER 2000
0.1 0.3 0.5 0.7
η

−1

−0.5

0

0.5

1

a 0 
[µ

b1/
2 ]

FIG. 3. a0 of pp ! npp1 in chiral perturbation theory. The
different lines correspond to values of the parameter related to
the three-nucleon force: d � 1 (long-dashed line). d � 0 (dot-
dashed line), d � 20.2 (solid line), and d � 21 (short-dashed
line). Data are from Ref. [36].

quite large. For example, our results for a0 can vary up
to a factor of 2 if the corresponding cutoff parameter is
increased to 2 GeV. The cutoff sensitivity is not a serious
difficulty because it also occurs in calculations of three-
nucleon forces. From the viewpoint of an effective field
theory, this can be simply understood: the large momen-
tum pieces of the loop integrals involved in the evaluation
of the c4 contribution can be absorbed by a counterterm,
namely, d2. Thus, the cutoff dependence of c4 directly
translates into a scale dependence of d2. A reasonable
phenomenological estimate should follow from using the
same cutoff and parameter set in both calculations. On
the experimental side, it is clear from Fig. 3 that a reduc-
tion of the uncertainty in the data would allow a stronger
constraint on d. We find this a strong motivation to the
continuation of the existing program on pion production.

We have shown that there is convergence in p-wave pion
production, and that data on this reaction can be used to
extract information about the three-nucleon force. It is
clear that more accurate data would be very useful. In
particular, the parameter d could be extracted and the cal-
culation of Ref. [9] repeated to predict three-nucleon ob-
servables. We find it very gratifying that chiral symmetry
provides a direct connection between pion production at
energies �350 MeV (IUCF) and Nd scattering at energies
�10 MeV (Madison, TUNL).
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