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Dynamical Symmetry Breaking in the Sea of the Nucleon
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We derive the nonanalytic chiral behavior of the flavor asymmetry d̄ 2 ū. Such behavior is a unique
characteristic of Goldstone boson loops in chiral theories, including QCD, and establishes the unambigu-
ous role played by the Goldstone boson cloud in the sea of the proton. Generalizing the results to the
SU(3) sector, we show that strange chiral loops require that the s 2 s̄ distribution be nonzero.
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Understanding the role of dynamical chiral symmetry
breaking in hadron structure is one of the central problems
in strong interaction physics. On very general grounds
one can show that Goldstone boson loops make signifi-
cant contributions to hadronic properties such as charge
distributions and magnetic moments. For example, in the
chiral limit the charge radii of the proton and neutron are
known to diverge as lnmp [1]. Such nonanalytic behavior
as a function of quark mass [recall that m2

p � m � �mu 1

md��2] is a unique characteristic of Goldstone boson loops.
Historically the focus for the role of dynamical chiral

symmetry breaking in hadron structure has been on low en-
ergy properties such as masses and electromagnetic form
factors. On the other hand, the possibility of an excess of
d̄ over ū quarks in the proton was predicted on the basis of
the nucleon’s pion cloud [2]. Since the experimental veri-
fication that indeed d̄ . ū [3], many analyses have been
presented in which the pion cloud is a major source of
the asymmetry [4,5]. Yet there has so far been no rigor-
ous connection established between these models and the
chiral properties of QCD. As a result, the fundamental im-
portance of the pion contribution to the flavor asymmetry
has not been universally appreciated.

In this Letter, we establish for the first time the nonana-
lytic chiral behavior of d̄ 2 ū and hence the unambiguous
role of the Goldstone boson cloud in the flavor asymmetry
of the nucleon sea. It turns out that the leading nonana-
lytic (LNA) behavior of the excess number of d̄ over ū
quarks in the proton has a chiral behavior typical of loop
expansions in chiral effective theories, such as chiral per-
turbation theory [6]. Specifically, we find

�D 2 U��0�
LNA �

Z 1

0
dx �d̄�x� 2 ū�x��LNA

�
2g2

A

�4pfp �2 m2
p log�m2

p�m2� , (1)

where gA is the axial charge of the nucleon [understood
to be taken in the chiral SU(2) limit, m ! 0], and m is
a mass parameter. This result also generalizes to higher
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moments, each of which has a nonanalytic component,
so that the d̄ 2 ū distribution itself, as a function of x,
has a model-independent, LNA component. The presence
of nonanalytic terms indicates that Goldstone bosons play
a role which cannot be canceled by any other physical
process (except by chance at a particular value of mp).
Such insight is vital when it comes to building models and
developing physical understanding of a system.

In deep-inelastic scattering the one-pion loop contribu-
tion to the nth moment of the d̄�x� 2 ū�x� difference is
given by [2,5]

�D 2 U��n� �
Z 1

0
dx xn�d̄�x� 2 ū�x�� �

2
3

V �n�
p ? f

�n�
pN ,

(2)

where V �n�
p is the nth moment of the valence pion structure

function. (The assumption implicit in the appearance of
the pion valence distribution is that the sea of the pion is
flavor symmetric. The generalization to the case where this
is not so is straightforward, but this contribution would be
confined to very small values of Bjorken x.) f�n�

pN
is the

nth moment of the pion distribution function in the nucleon
(or the N ! pN splitting function):

f
�n�
pN �

Z 1

0
dy ynfpN � y� . (3)

The momentum dependence of the pion distribution func-
tion is given by [5,7]

fpN � y� �

µ
3g2

pNN

16p2

∂
y

Z m2

tmin

dt
t

�t 1 m2
p �2 , (4)

where t � 2kmkm (km is the four-momentum of the pion),
with a minimum value tmin � M2y2��1 2 y� determined
from the on-shell condition for the recoil nucleon, and
gpNN is the pNN coupling constant. Since the nonana-
lytic structure of pion loops does not depend on the short-
distance behavior, we have for simplicity introduced an
ultraviolet cutoff, m, to regulate the integral in Eq. (4).
One could have equally well used a form factor for the
pNN vertex, or a more elaborate regularization procedure.
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It is vital to understand that this contribution to d̄ 2 ū is
a leading twist contribution to the structure function of the
nucleon. The hard scattering involves the constituents of
the pion itself, while the momentum of the pion is typical
of those met in chiral models of nucleon structure, namely
a few hundred MeV�c. The fact that the momentum asso-
ciated with the pion is low is the reason one can discuss the
LNA structure of d̄ 2 ū. There may, of course, be other
terms which contribute to the physical difference between
d̄ and ū, which cannot be expressed in the factorized form
of Eq. (2), such as interactions of the spectator quark in the
pion with the recoil nucleon. However, the LNA behavior
of d̄ 2 ū is entirely determined by the one-pion loop and
cannot be altered by such contributions.

Taking the nth moment of the distribution in Eq. (4), the
LNA chiral log contribution from a pion loop is
f
�n�
pN jLNA � �3M2g2

A��4pfp�2� 3

(
�21�n�2��n 1 4���2n 1 4�� �mp�M�n12 log�m2

p�m2� �n � 0, 2, 4, . . .� ,

�21��n11��2��n 1 5��2� �mp�M�n13 log�m2
p�m2� �n � 1, 3, 5, . . .� ,

(5)
where the partially conserved axial current relation has
been used to express the pNN coupling constant in terms
of the axial charge gA [both gA and the nucleon mass, M,
are taken in the chiral SU(2) limit]. For the n � 0 mo-
ment, conservation of baryon number requires that V �0�

p �
1, which leads directly to Eq. (1). The LNA contributions
to the n . 0 moments are suppressed in the chiral limit
by additional powers of mn

p . The scale dependence of
V �n�

p for n . 0 introduces a Q2 dependence into the higher
moments of d̄ 2 ū. In particular, the observed decrease
with Q2 of the n . 0 moments of d̄ 2 ū arises from the
QCD evolution of the momentum fraction carried by va-
lence quarks in the pion (V �n.0�

p ).
Another contribution known to be important for nucleon

structure is that from the pD component of the nucleon
wave function [8]. For a proton initial state, the dominant
Goldstone boson fluctuation is p ! p2D11, which leads
to an excess of ū over d̄. The one-pion loop contribution to
the nth moment of d̄ 2 ū from this process can be written
in a similar form as Eq. (2),

�D 2 U��n� � 2
1
3

V �n�
p ? f

�n�
pD , (6)

where f
�n�
pD is the nth moment of the pD momentum

distribution [9],

fpD� y� �

µ
2g2

pND

16p2

∂
y

Z m2

tmin

dt

3
�t 1 �MD 2 M�2� �t 1 �MD 1 M�2�2

6M2
D�t 1 m2

p �2
,

(7)

with tmin � M2y2��1 2 y� 1 DM2y��1 2 y�, and
DM2 � M2

D 2 M2 (again the masses and the coupling
gpND are implicitly those in the chiral limit). Evaluating
the nth moment of the pD distribution explicitly, one
finds the following LNA behavior:

f
�n�
pDjLNA �

6
25

g2
A

�4pfp�2

�MD 1 M�2

M2
D

�21�n

3
m2n12

p

DM2n
log�m2

p�m2� , (8)

where SU(6) symmetry has been used to relate gpND to gA.
We stress that the current analysis aims only at estab-

lishing the model-independent, chiral behavior of flavor
asymmetries, without necessarily trying to explain the en-
tire asymmetries quantitatively. It is interesting, never-
theless, to observe that with a mass scale m � 4pfp �
1 GeV, the magnitude of the LNA contribution (at the
physical pion mass) to the n � 0 moment of d̄ 2 ū is
quite large—of order 0.2, most of which comes from the
pN component. For comparison, we recall that the latest
experimental values for the asymmetry �D 2 U��0� lie be-
tween �0.1 0.15 [3].

In addition to pD intermediate states, contributions
from other, heavier baryons and mesons to the d̄ 2 ū
asymmetry have been considered in meson cloud models
[10]. Unlike the situation that we have explored for the
(pseudo-Goldstone) pion, however, there is no direct,
model-independent connection with the chiral properties
of QCD for mesons such as the r and v.

One can generalize the preceding analysis to the flavor
SU(3) sector by considering the chiral behavior of the s
and s̄ components of the sea of the nucleon associated with
kaon loops. One finds that the nontrivial moments of the
difference between the s and s̄ distributions are nonanalytic
functions of m 1 ms, with ms the strange quark mass.

As originally proposed by Signal and Thomas [11], vir-
tual kaon loops are one possible source of nonperturba-
tive strangeness in the nucleon [12]. Unlike the case of
SU(2) flavor asymmetry, however, where only the direct
coupling to the pion plays a role, both the kaon and hy-
peron (for example, the L) carry nonzero strangeness and
hence contribute to strange observables. Furthermore, the
different momentum distributions of s̄ quarks in the kaon
and s quarks in the hyperon lead to different s and s̄ dis-
tributions as a function of x, as well as to nonzero values
for strange electromagnetic form factors [12].

The nth moment of the s 2 s̄ difference arising from a
one-kaon loop can be written [11]

�S 2 S̄��n� �
Z 1

0
dx xn�s�x� 2 s̄�x��

� V
�n�
L ? f

�n�
LK 2 V

�n�
K ? f

�n�
KL , (9)

where f
�n�
KL is the nth moment of the N ! KL splitting

function,

fKL� y� �

µ
g2

KNL

16p2

∂
y

Z m2

tmin

dt
t 1 �ML 2 M�2

�t 1 m2
K �2

, (10)
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with tmin � M2y2��1 2 y� 1 DM2y��1 2 y� and
DM2 � M2

L 2 M2. The corresponding moment of the L

distribution, f
�n�
LK , can be evaluated from f

�n�
KL through the

symmetry relation between the splitting functions:

fLK � y� � fKL�1 2 y� . (11)

Zero net strangeness in the nucleon implies the vanish-
ing of the n � 0 moment, �S 2 S̄��0� � 0, which fol-
lows from Eq. (11) and strangeness number conservation,
V

�0�
L � V

�0�
K � 1. For higher moments, however, this is

no longer the case, so that in general �S 2 S̄��n� will be
nonzero for n . 0. In particular, the LNA components of
the strange distributions will be given by

f
�n�
KLjLNA �

27
25

M2g2
A

�4pfp �2 �ML 2 M�2�21�n

3
m2n12

K

DM2n14 log�m2
K�m2� , (12)

where we have used SU(6) symmetry to relate gKNL to
gA�fp . It is especially interesting to note that while the
LNA part of the nth moment of s̄ is of order m2n12

K logm2
K ,

from Eq. (11) the LNA contribution to the nth moment of
s is of order m2

K logm2
K . As a consequence, the entire x

dependence of s�x� 2 s̄�x� has a LNA component of or-
der m2

K logm2
K . Since the LNA terms in the chiral expan-

sion are model independent, and in general not canceled
by other contributions, this result establishes the fact that
the process of dynamical symmetry breaking in QCD im-
plies that the s and s̄ distributions must have a different
dependence on Bjorken x.

Experimental evidence for a strange-antistrange asym-
metry is being sought in deep-inelastic neutrino and
antineutrino scattering experiments by the CCFR Col-
laboration [13]. At the present level of precision it is
not possible to resolve the asymmetry which, as we have
shown, is expected on quite general grounds. Neverthe-
less, it should be amenable to future measurements.

A similar analysis can also be performed for spin-
dependent quark distributions. Although there will be no
contribution to polarized asymmetries from direct cou-
pling to the Goldstone bosons, there will be indirect effects
associated with chiral loops via the interaction with the
baryon which accompanies the meson “in the air.” Such
processes will renormalize the axial charge, for example,
as well as give rise to polarization of strange quarks.
Interestingly, Goldstone boson loops will not give rise
to any flavor asymmetries for spin-dependent antiquark
distributions, Dd̄ 2 Dū, for which the only known source
is Pauli blocking effects in the proton [14].

In summary, we have derived the leading nonanalytic
chiral behavior of flavor asymmetries in the proton which
are associated with Goldstone boson loops. These results
establish the fact that the measurement of flavor asymme-
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tries in the nucleon sea reveals direct information on dy-
namical chiral symmetry breaking in QCD.
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