
VOLUME 85, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 2 OCTOBER 2000
Fields over Unsharp Coordinates
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It has been shown that space-time coordinates can exhibit only very few types of short-distance struc-
tures, if described by linear operators: they can be continuous, discrete, or “unsharp” in one of two
ways. In the literature, various quantum gravity models of space-time at short distances point towards
one of these two types of unsharpness. Here, we investigate the properties of fields over such unsharp
coordinates. We find that these fields are continuous—but possess only a finite density of degrees of
freedom, similar to fields on lattices. As a special case we recover the Shannon sampling theorem of
information theory.

PACS numbers: 04.62.+v, 03.67.–a, 11.25.–w, 89.70.+c
At the heart of every candidate theory of quantum grav-
ity is an attempt to understand the structure of space-time
at very short distances. The reason is a simple gedanken
experiment: the latest when trying to resolve distances
as small as the Planck scale the accompanying energy-
momentum fluctuations due to the uncertainty relation
should cause curvature fluctuations large enough to sig-
nificantly disturb the very space-time distance which one
attempts to resolve. Speculations about the resulting be-
havior of space-time at small distances have ranged from
the idea that space-time is discrete, to that it is foamlike,
to that space-time may be a derived concept with a highly
dynamical short-distance structure, as, e.g., string theory
would suggest. At least at present, however, there is no
experimental access to sufficiently small scales; and there-
fore, a priori, the short-distance structure of space-time
could still be any one out of infinitely many possibilities.

In this context, it has recently been pointed out, in [1],
that the range of possible short-distance structures can be
reduced to only very few basic possibilities, under a cer-
tain assumption. The assumption is that the fundamental
theory of quantum gravity possesses for each dimension
of space-time an operator Xi which is linear and whose
expectation values are real. Note that this assumption is
weaker than the usual quantum mechanical assumption of
self-adjointness. The dynamics of these Xi may be compli-
cated and the Xi may or may not commute. Nevertheless,
one can prove on functional analytic grounds that any such
operator Xi , considered separately, describes a coordinate
which is necessarily either continuous or discrete, or it is
unsharp in one of two well-defined ways. All other cases
are mixtures of these.

Since continua and lattices are familiar, we will study
one of the two types of unsharp short-distance structures.
The second type of unsharpness will be dealt with else-
where. The type of unsharp coordinate which we will
here investigate can be characterized by an uncertainty re-
lation [1]: Such a coordinate is described by an opera-
tor Xi for which the formal standard deviation DXi �
��Xi 2 �Xi��2�1�2 obeys some positive lower bound:
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DXi�f� $ DXi
min��fjXijf�� .

Here, f is any unit vector on which the operator can act,
and the function DXi

min�x� describes how the lower bound
depends on the Xi-expectation value. If this were nonrel-
ativistic quantum mechanics, the interpretation would be
that the Xi coordinate is unsharp in the sense that particles
cannot be localized to arbitrary precision on the xi axis and
that the lower bound on the position resolution depends in
general on the Xi-expectation value: the localizability of
the particle is in general a function of where on the xi axis
one tries to localize the particle. The function DXi

min�x�
may in general also take the value zero, but we will focus
on the case where it is strictly positive.

This type of unsharp short-distance structure has indeed
frequently appeared in quantum gravity and, in particular,
in string theory, in fact from arguments which are inde-
pendent of our symmetric linear operator assumption. For
example, several studies (see, e.g., [2]) suggest that the
Heisenberg uncertainty relation may effectively pick up
Planck scale or string scale correction terms of the fol-
lowing form:

DxDp $
h̄
2

�1 1 b�Dp�2 1 . . .� . (1)

For b positive, the lowest order correction in Eq. (1) im-
plies that there is a constant lower bound for Dx, namely,
Dxmin � h̄

p
b. Of course, it is not necessarily surpris-

ing if even quite different candidate quantum gravity the-
ories arrive in this way or another at some positive lower
bound DXi

min�x� on the formal uncertainty in coordinates
Xi , because, as we mentioned, for real entities which are
described by linear operators this is one out of very few
possibilities.

Our aim here is to investigate what this general type
of unsharp short-distance structure means in field theory:
Is it possible to define fields f�xi, y� “over” such an
unsharp coordinate Xi? The operator Xi should act simply
as Xi : f�xi, y� ! xif�xi, y�, while we let y stand col-
lectively for all other coordinates (if commutative) or any
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other quantum numbers. The main question is as follows:
How do the fields depend on xi , given that an unsharp coor-
dinate xi is neither continuous nor discrete? How does one
calculate the Hilbert space scalar product of fields—does
it involve an integral over xi , a sum over discrete points on
the xi axis, or something else?

As we will show here, the answer is that fields f�xi , y�
over such unsharp coordinates are indeed well-defined:
these fields are continuous functions f�xi, y� over a con-
tinuous variable xi . Crucially, however, these fields are
automatically ultraviolet cutoff in the sense that they pos-
sess only finitely many degrees of freedom per unit length
along the xi coordinate, similar to fields on lattices.

Before we begin describing the details, let us agree to
from now on suppress the index i and the other variables
y. We should also mention that some of the operators
which describe unsharp coordinates of this type can be
represented only on fields which possess isospinor indices,
but this phenomenon will be discussed elsewhere.

Let us begin with two definitions: By a discretization
of the x axis we mean a discrete set of real numbers, �xn	,
where xn11 . xn and where n runs through all integers.
By a partitioning of the x axis we mean a smoothly pa-
rametrized family of discretizations �xn�a�	 which together
make up the entire x axis, namely, such that every point on
the x axis, i.e., every real number, occurs in exactly one of
the discretizations.

Now our claim is that to each unsharp coordinate X,
as characterized by a curve DXmin�x�, there corresponds a
partitioning �xn�a�	 of the x axis such that, if a field f�x�
is known only on one of the partitioning’s discretizations,
then the field can already be reconstructed everywhere on
the x axis. Namely, if for some arbitrary fixed a the
amplitudes f���xn�a���� are known for all n, then f�x� can
be recovered for all x through a reconstruction formula of
the form

f�x� �
X
n

G���x, xn�a����f���xn�a���� . (2)

Thus, the knowledge of a field’s amplitudes at finitely
many points per unit length along the x axis indeed suffices
to describe the field entirely. Thereby, the operation of
reconstructing a field is interchangeable with the operation
of multiplying it by X:

xf�x� �
X
n

G���x, xn�a����xn�a�f���xn�a���� .

The scalar product of two fields (as far as the x dependence
is concerned) is a sum:

�f1jf2� �
X
n

f�
1���xn�a����f2���xn�a���� .

This scalar product formula gives in fact the same result
independently of a, i.e., independently of the choice of
discretization on which the sum is being calculated.

Similarly, also the X-expectation value and the sec-
ond moment of fields can be calculated on any one of
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the discretizations �xn�a�	 and the result does not de-
pend on a. Correspondingly, DX�f� � ��fjX2jf� 2

�fjXjf�2�1�2 is the standard deviation of the fields’ dis-
crete samples on any one of the discretizations �xn�a�	 of
the x axis. We remark that, more generally, if a field is not
only in the domain of X but also in the domain of higher
powers of X, say Xr , i.e., if the field decays at infinity with
the corresponding inverse power, then the higher moments
up to 2r are finite, and they too are independent of the dis-
cretization in which they are calculated:

�fjXrjf� �
X
n

�xn�a��rf����xn�a����f���xn�a���� .

We now still need to address the question of exactly how
the minimum position uncertainty curve DXmin�x� corre-
sponds to a partitioning of the x axis. One expects, of
course, that in regions of the x axis where DXmin�x� is
small the spacing needs to be tighter and vice versa.

To see the precise relationship, let us first recall the mini-
mum position uncertainty curve for particles which live
on a one-dimensional lattice �xn	. Clearly, these particles
can be localized to absolute precision DX � 0 at each of
the lattice sites, say xn0 , namely, with the wave function
f�xn� � dn,n0. If, however, a particle’s expectation value
lies in between two lattice sites then its standard deviation
cannot be lower than some finite value. As is straightfor-
ward to verify, the curve DXmin�x� for a one-dimensional
lattice consists of half circles which arc from lattice site to
lattice site.

The fields over an unsharp coordinate do not live on only
one discretization of the x axis, but simultaneously on a
whole family of discretizations which together constitute
a partitioning of the x axis. Indeed, as will follow from
our main result below, in contrast to ordinary fields over a
lattice, fields over unsharp coordinates therefore obey an
equation of the following form (for arbitrary fixed a):X

n
fn�a�f���xn�a���� � 0 . (3)

Equation (3) expresses that, on each one of the discretiza-
tions, the fields cannot be too peaked: We will find that
fn�a� fi 0 for all n, which implies, for example, that fields
f�xn� � dn,n0 do not occur. More precisely, Eq. (3) im-
plies that the variable lower bound DXmin�x� is the joint
lower bound of all the minimum X-uncertainty curves of
the individual discretizations in the partitioning. Namely,
if we denote the minimum X-uncertainty curve of the dis-
cretization to the parameter a by DXmin�x, a� [composed
of half circles which arc from point xn�a� to point xn11�a�
for all n] then

DXmin�x� � max
a

DXmin�x, a� .

In this way, every partitioning �xn�a�	 of the x axis deter-
mines a minimum position uncertainty curve DXmin�x� and
vice versa. We can describe partitionings conveniently by
how their lattice spacings vary over the x axis. Indeed, for
each partitioning there is a unique lattice spacing function
s�x� which obeys for all n and a:
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s����xn11�a� 1 xn�a���2��� � xn11�a� 2 xn�a� .

Its inverse, s�x� :� 1�s�x�, the “density of degrees of
freedom” function, of course also describes an unsharp
coordinate entirely.

Interestingly, s�x�, s�x�, and, correspondingly, the mini-
mum position uncertainty curve DXmin�x� cannot vary
arbitrarily abruptly. Intuitively, the reason is clear: if a par-
ticle can be localized only to very little precision around
one point on the x axis, then it is plausible that the particle
cannot be localized to very high precision around a closely
neighboring point.

In fact, we find that the possible spatial variability of the
unsharpness of a coordinate is constrained to the extent that
one discretization, say �xn�0�	, together with the set of data
� d

da xn�0�	, i.e., together with the discretization’s derivative
with respect to a, already determines an entire partitioning
�xn�a�	. {Technically, the discrete amplitudes y�xn�0�� :�
�21�n�xn�0� 2 i�21�dxn�da�0��1�2 belong to a field y�x�
which can be reconstructed through Eq. (2), thereby yield-
ing dxn�a��da and therefore �xn�a�	 for all values of a.}

Any unsharp coordinate can therefore be specified en-
tirely by specifying one of its discretizations �xn�0�	 to-
gether with its derivative � d

da xn�0�	. Let us abbreviate
these data as xn :� xn�0� and x0

n :� dxn�a��daja�0.
We still need to give explicit expressions for the coef-

ficients fn�a� of Eq. (3) and of course also for the recon-
struction kernel G of Eq. (2). Expressed in terms of the
data �xn	 and �x0

n	, we obtain (after lengthy calculation)

fn�0� � �21�n
p

x0
n , (4)

and

G�x, xn� � �21�z�x,xn�

p
x0

n

x 2 xn

µX
m

x0
m

�x 2 xm�2

∂21�2

.

(5)

Here, �21�z�x,xn� provides a sign factor such that G�x, xn�
is continuous in x. The sign factor arises naturally in a
product representation:

G�x, xn� � lim
N!`

Q
jmj,N ,mfin�x 2 xm�qP

jrj,N
x0

r

x0
n

Q
jsj,N ,sfir �x 2 xs�2

.

The proof of these results is rather technical. It is con-
tained in a previous version (see [3]) and will be presented
in detail in a follow-up paper. Let us sketch only the proof:
The self-adjoint operator X�0� with purely discrete spec-
trum �xn	 possesses simple symmetric restrictions X, each
with a U�1� family of self-adjoint extensions X�a�. It can
be shown that their spectra, �xn�a�	, yield partitionings of
the real line and that the data �x0

n	 suffice to specify the re-
striction and, consequently, the partitioning. The main part
of the proof then consists in calculating the unitaries which
interpolate the eigenbases of the extensions. The matrix
elements of those unitaries constitute the reconstruction
kernel.
We eventually arrive at one-parameter resolutions of the
Hilbert space identity in terms of an overcomplete and
continuously parametrized set of normalizable vectors:

1 �
1

2p

Z 2p

0
da

X
n
jxn�a�� �xn�a�j

�
1

2p

Z 1`

2`
dx

da

dx
jx� �xj .

Note that coherent states and continuous wavelets (see,
e.g., [4]) yield analogous two-parameter resolutions of the
identity.

Let us now consider the instructive special case of un-
sharp coordinates whose minimum position uncertainty
curve DXmin�x� is constant. In this case, also the density
of degrees of freedom s�x� is constant, s � �2DXmin�21,
and the corresponding partitioning �xn�a�	 of the x axis
reads

xn�a� � 2nDXmin 1 a .

This means that xn � xn�0� � 2nDXmin and x0
n �

dxn

da �0� � 1. Applying these parameters in Eq. (5) yields
the reconstruction kernel. In this special case, we can use
the fact that X

n

1
�z 2 n�2 �

µ
p

sinpz

∂2

to obtain a particularly simple expression for the kernel:

G�x, xn� � sinc

µ
p�x 2 xn�

2DXmin

∂
.

We observe that the kernel, being a sinc function, is
the Fourier transform of the function which is 1 in the
frequency interval �21�4DXmin, 11�4DXmin� and which
vanishes everywhere else. This means that the set of
fields over a coordinate with constant unsharpness DXmin
has a particularly simple characterization: It is the set
of fields whose frequency range is limited to the interval
�2vmax, vmax�, where vmax � 1�4DXmin. Also, Eq. (3)
acquires a simple interpretation: Eq. (4) yields fn�0� �
�21�n so that, as is readily verified, Eq. (3) expresses
that the fields’ Fourier transforms vanish at 6vmax; i.e.,
Eq. (3) is now a boundary condition in Fourier space.

The fact that functions whose frequency range is
within the interval �2vmax, vmax� can be reconstructed
everywhere, via the sinc-function kernel G�x, xn� �
sinc�2p�x 2 xn�vmax�, from their values on discrete
points �xn	 with spacing 1�2vmax, is indeed well-known,
namely, as the Shannon sampling theorem. The sampling
spacing xn11 2 xn � 1�2vmax is called the Nyquist
sampling rate. The basic idea of the theorem was actually
already known to Borel (1897) and, according to [5],
perhaps even to Cauchy (1841).

Shannon is credited for introducing the theorem into in-
formation theory in the 1940s (see [6]): Shannon showed
that, due to noise and other limitations, in effect only
finitely many amplitude levels of electronic signals can
2875
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be resolved, say N . Consequently, for any given en-
semble of signals, the measurement of a signal’s ampli-
tude at some fixed time t can yield at most log2 N bits
of information. Crucially now, Shannon’s ansatz is to
idealize electronic signals f�t� as bandlimited, i.e., as
frequency-limited functions. The sampling theorem then
shows that 2vmax amplitude measurements per unit time
suffice to capture such signals entirely—and this implies
that these signals can carry information at most at the rate
b � 2vmax log2 N in bits�s or, in terms of the density of
degrees of freedom, b � s log2 N .

The ability provided by the sampling theorem to recon-
struct continuous signals from discrete samples and the
analysis of their information content have indeed proven
very useful in ubiquitous applications from scientific data
taking and data analysis to digital audio and video engi-
neering. This, of course, motivated several generalizations
of the sampling theorem (see, e.g., [7]). For example, there
are methods to improve the convergence of the reconstruc-
tion through oversampling (see, e.g., [5]).

One may ask, therefore, why it should have been diffi-
cult to generalize the theorem for time-varying information
densities. The main reason is that what would seem to be
the obvious approach, namely, to try to use Fourier the-
ory to define a notion of time-varying bandwidth, vmax�t�,
faces major difficulties: First, the resolution of a signal’s
frequency content in time is, of course, limited by the time-
frequency uncertainty relation. Second, even low band-
width signals can actually oscillate arbitrarily fast in any
interval of finite size [on these so-called superoscillations
(see e.g. [8])].

We avoid those problems by not even trying to define
variable bandwidths vmax�t� in any Fourier sense. In-
stead, we obtain a handle on variable information densi-
ties through variable densities of degrees of freedom s�t�,
which are well-defined directly in the time domain. Pos-
sible practical applications are currently being explored.

We note that, as a by-product of considering the special
case of constant density of degrees of freedom, we have
found that the unsharpness of space-time according to the
quantum gravity and string theory motivated uncertainty
relation, Eq. (1), is indeed of the same type as the un-
sharpness in the time resolution of bandlimited electronic
signals. In fact, it is also the same type as the fundamental
unsharpness of optical images since, as is well-known, the
aperture induces a bandlimit on the measurement of angles.
Of course, to find this type of unsharpness in such different
contexts is again not necessarily surprising, given that un-
sharp real entities described by linear operators—within
any arbitrary theory—can exhibit only two types of
unsharpness.

Our finding that fields over unsharp coordinates possess
finite densities of degrees of freedom can serve, as we saw,
as the starting point for an information theoretic analysis
of ensembles of fields. This should be interesting to pur-
sue. Indeed, in studies in quantum gravity, and in particu-
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lar in string theory, the counting of degrees of freedom and
an information theoretical perspective have recently found
renewed interest, in particular in the contexts of the black
hole information loss problem and the holographic prin-
ciple (see, e.g., [9]).

Our observation that fields over unsharp coordinates are
continuous but behave in many ways similar to fields over
lattices also raises questions such as how anomalies mani-
fest themselves with this type of ultraviolet cutoff: perhaps
through fermion doubling as on lattices, or else? Eventu-
ally, it should be possible to work out model independent
phenomenological signatures of this type of unsharp space-
time. These might be testable if, as recent models of large
extra dimension suggest possible, the onset of strong grav-
ity effects is not too far above the currently experimentally
accessible scale of about 10218 m, rather than at the Planck
scale of 10235 m (see, e.g., [10]).

The author is grateful to John Klauder for very valuable
criticisms.
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