
VOLUME 85, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 2 OCTOBER 2000

285
Exact Particle and Kinetic-Energy Densities for One-Dimensional Confined Gases
of Noninteracting Fermions
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We propose a new method for the evaluation of the particle density and kinetic pressure profiles
in inhomogeneous one-dimensional systems of noninteracting fermions, and apply it to harmonically
confined systems of up to N � 1000 fermions. The method invokes a Green’s function operator in
coordinate space, which is handled by techniques originally developed for the calculation of the density
of single-particle states from Green’s functions in the energy domain. In contrast to the Thomas-Fermi
approximation, the exact profiles show negative local pressure in the tails and a prominent shell structure
which may become accessible to observation in magnetically trapped gases of fermionic alkali atoms.

PACS numbers: 03.75.Fi, 05.30.Fk, 31.15.Ew
The techniques which have led to the achievement of
Bose-Einstein condensation in vapors of bosonic atoms
[1–4] are currently being used to trap and cool dilute gases
of fermionic alkali atoms [5]. Under magnetic confine-
ment the s-wave collisions between pairs of fermions in
a single hyperfine level are suppressed by the Pauli prin-
ciple, and the geometry of the trap can be adapted to have
cylindrical symmetry with a transverse confinement which
may be hundreds of times stronger than the longitudinal
one. It is thus possible to experimentally realize quasi-one-
dimensional (quasi-1D) inhomogeneous systems of almost
noninteracting fermions at very low temperature and high
purity.

A number of one-dimensional (1D) physical models can
be solved exactly [6] and their solution serves as a test of
approximate theories and contributes to the understanding
of real systems. Some important examples are the deter-
mination of the ground state and excitation spectrum of
a hard-core Bose gas in 1D [7] and the solution of the
Kronig-Penney model for the electron energy bands in a
1D crystal lattice [8]. The spectral and transport properties
of other 1D systems of noninteracting electrons have been
studied as models for polymers and quantum wires, using
Green’s function methods [9–12] for which ingenuous
techniques such as a decimation/renormalization proce-
dure [13,14] have been developed.

In this paper we present a new method for the exact
evaluation of the ground-state particle density profile in a
spin-polarized 1D system of up to large numbers of non-
interacting fermions in arbitrary spatial confinement. In
essence we show that, just as the single-particle density of
states in the energy domain can be obtained by powerful
Green’s function methods, similar techniques yield the par-
ticle density in the 1D space domain. In fact, our method
also allows the evaluation of higher moments of the one-
body density matrix: we focus here on its second moment,
which is simply proportional to the kinetic-energy density
and to the kinetic pressure.
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As an application of the general method we give results
for the particle density and kinetic pressure profiles of a de-
generate Fermi gas in harmonic confinement. This model
is directly relevant to the current experiments on atomic
Fermi gases and we show that the shell structure noticed
for the particle density in earlier theoretical studies in 3D
[15,16] is greatly enhanced in 1D. We also use our exact
results to test the Thomas-Fermi (local density) approxi-
mation in dependence of the number of fermions in the
confined gas.

General formulation.—The one-body Dirac density
matrix for a system of N noninteracting fermions at zero
temperature can be expanded on the single-particle wave
functions ci�x� � �x jci� as r�x1, x2� �

PN
i�1 c

�
i �x1� 3

ci�x2�. By using the representation of the translation
operator, this becomes

r�x1, x2� �
NX

i�1

c�
i �x1�e2ip̂�x12x2�ci�x1� , (1)

showing how distant points are correlated through the mo-
mentum operator p̂. Expansion in powers of the relative
coordinate r � x1 2 x2 yields physical observables such
as the particle density profile n�x�,

n�x� � r�x 1 r�2, x 2 r�2�jr�0 �
NX

i�1

�cijd�x 2 xi� jci�

(2)

and the kinetic pressure P�x�,

P�x� � 2
h̄2

m
≠2

≠r2 r�x 1 r�2, x 2 r�2�jr�0

�
1

2m

NX
i�1

�cijp
2
i d�x 2 xi� 1 d�x 2 xi�p2

i jci� . (3)

This is twice the kinetic-energy density.
The main idea of this Letter is to rewrite Eqs. (2) and

(3) as the imaginary part of the ground-state average of
suitable operators related to the Green’s function in coor-
dinate space G�x� � �x 2 x̂ 1 i´�21. We have
© 2000 The American Physical Society
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n�x� � 2
1
p

lim
´!01

Im
NX

i�1

�cijG�x�jci� (4)

and

P�x� � 2
1
p

lim
´!01

Im
NX

i�1

�cij
p̂2

m
G�x�jci� . (5)

G�x� can then be treated by methods analogous to those
used for treating Green’s functions in the energy domain.

The equivalence between expressions (2) and (4) is eas-
ily proved in the coordinate representation, where the den-
sity profile in Eq. (4) reads

n�x� � 2
1
p

lim
´!01

Im
NX

i�1

Z
dxi jci�xi�j2

1
x 2 xi 1 i´

,

(6)

yielding Eq. (2) when one takes the limit ´ ! 01. The
equivalence between expressions (3) and (5) for P�x� is
similarly proved.

Evidently, this method can be applied to all 1D sys-
tems which may be described by single-particle orbitals:
one only needs to know the representation of the position
and momentum operators on such a basis. Hence, interac-
tions could also be included in evaluating the particle den-
sity through the use of Kohn-Sham single-particle orbitals.
Models of displacement fields (such as those induced by
impurities) may also be studied directly without previous
evaluation of orbitals.

Noninteracting fermi gas in harmonic trap.—As al-
ready noted, a 1D Fermi model is relevant to the spin-
polarized fermionic vapors in magnetic confinement [5],
where it is possible to realize experimentally a 1D configu-
ration by making use of very anisotropic axially symmetric
traps. At low temperature, only the transverse ground state
of the trap is populated and the vapor can be described by
an effective 1D harmonic Hamiltonian.

An analytic expression for the particle density of this
system has been given by Husimi [17,18] in terms of the
wave function of the N th fermion in the trap. However, a
calculation of the density profile and the kinetic pressure
by his approach is limited to small values of N and has
been reported only for N � 1 and 2 [18]. Our method al-
lows us to efficiently evaluate these ground-state properties
even for quite large numbers of particles. Of course, the
simplicity of the representation of the position and momen-
tum operators in this system makes it a favorable example.

A. Particle density profile: We start with the calcula-
tion of the particle density. For a linear harmonic oscillator
the position operator is represented as x̂ � �a 1 ay��

p
2

on the basis �jci�� of the eigenvectors of the Hamiltonian.
As usual, the creation and destruction operators satisfy the
relations ajci� �

p
i 2 1 jci21� and ayjci� �

p
i jci11�.

A straightforward procedure for evaluating the profile (4) is
to invert the matrix �x 2 x̂ 1 i´� and to calculate its trace
on the submatrix of its first N 3 N block (TrN ). We em-
ploy the relation TrNQ � ≠�ln det�Q21 1 l�N �	�≠ljl�0,
where �N is a diagonal semi-infinite matrix with its first N
eigenvalues equal to 1 and null elsewhere [19], to obtain

n�x� � 2
1
p

lim
´!01

Im
≠

≠l
�ln det�x 2 x̂ 1 i´ 1 l�N �	l�0 .

(7)

The calculation of the determinant in Eq. (7) is conve-
niently performed by the recursive algorithm developed
in [20]. Renormalization of the tridiagonal operator R̂ �
x̂ 2 l�N allows us to write

det�x 2 R̂ 1 i´� �
Ỳ
k�1

�x 2 ãk 1 i´� (8)

with ã1 � 2l, ãk11 � 2l 1
1
2 k�x 2 ãk 1 i´�21 for

1 , k , N and ãk11 � 1
2 k�x 2 ãk 1 i´�21 for k $ N .

The scheme given in Eqs. (7) and (8) is easily imple-
mented numerically. In practice we have performed the
calculation of the determinant (8) up to the product of its
first M terms, which corresponds to inverting an M 3 M
matrix. We have checked the convergence of this approxi-
mation by increasing the dimension M and correspond-
ingly decreasing the value of ´.

In Fig. 1 we report the density profile n�x� for N � 5,
10, and 20 fermions, with M � 105 and ´ � 0.01. The
exact profiles are also compared with those given by the
Thomas-Fermi approximation (equivalent to the local den-
sity operator, or LDA),

nLDA�x� �
1
p

�2N 2 x2�1�2 (9)

(in units such that h̄ � 1, m � 1, and v � 1). The exact
profiles contain N oscillations, which become smaller in
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FIG. 1. Exact particle density profile (bold lines) for N � 5,
10, and 20 harmonically confined fermions, compared with the
corresponding profiles evaluated in the local density approxima-
tion. Positions are in units of the characteristic length of the
harmonic oscillator aho �

p
h̄��mv� and the particle density in

units of a21
ho .
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relative amplitude as N increases. Without any special nu-
merical efforts we have evaluated the exact density profile
up to N � 1000: this would otherwise require the calcula-
tion of Hermite polynomials up to the 1000th degree. For
large N the oscillations are so small in relative amplitude
that their smoothing in the LDA profile becomes reason-
ably accurate, except for the region of the tails.

B. Kinetic pressure profile: The particle density profile
that we have evaluated above is the analog of the density
of single-particle states in the energy domain. In the space
domain other single-particle quantities acquire physical in-
terest, as is the case for the kinetic pressure in Eq. (3). We
also show for this function how one can profitably resort
to a renormalization technique.
2852
Taking Q � p̂2G�x�, Eq. (5) can be written as

P�x� � 2
1
p

lim
´!01

Im
≠

≠l
�ln det�x 2 x̂ 1 i´ 1 l�Np̂2�	l�0 .

(10)

The matrix �x 2 x̂ 1 i´ 1 l�Np̂2� appearing in Eq. (10)
is pentadiagonal on the first N rows, owing to the form
of the operators x̂ and p̂ � i�ay 2 a��

p
2 in the basis

of the energy eigenstates �jci��. The calculation of the
determinant of such a matrix can again be performed by the
recursive algorithm given in [20]. Renormalization of the
operator K̂ � x̂ 2 l�Np̂2 is made on blocks of dimension
2 for the pentadiagonal part and on blocks of dimension 1
for the tridiagonal part. This allows us to write
det�x 2 K̂ 1 i´� �

8<
:

Q�N12��2
j�1 det�x 2 Ãj 1 i´�

Q`
k�N13 �x 2 ãk 1 i´� �even N� ,Q�N13��2

j�1 det�x 2 Ãj 1 i´�
Q

`
k�N14 �x 2 ãk 1 i´� �odd N� .

(11)

The renormalized 2 3 2 blocks, Ãj , satisfy the recursion relation

Ãj � Aj 1 Bj,j21�x 2 Ãj21 1 i´�21Bj21,j (12)

for j . 1 and Ã1 � A1. The matrices Aj , Bj,j11, and Bj11,j are submatrices of the operator K̂ , which are defined as
follows:

Aj �

√
2l�2j 2 3�2�uN22j11

p
�2j 2 1��2p

�2j 2 1��2 2l�2j 2 1�2�uN22j

!
, (13)

Bj,j11 �

√
l

p
2j�2j 2 1� uN22j11�2 0

p
j l

p
2j�2j 1 1� uN22j�2

!
, (14)

and

Bj11,j �

√
l

p
2j�2j 2 1� uN22j21�2

p
j

0 l
p

2j�2j 1 1� uN22j22�2

!
, (15)
with uk � 1 for k $ 0 and uk � 0 otherwise. The recursion
relation for the elements ãk is again ãk11 �

1
2 k��x 2 ãk 1

i´�, the first elements being ãk11 �
1
2k�x 1 i´ 2

�Ãk�2	22 2 �Ãk�2	21�Ãk�2	12��x 1 i´ 2 �Ãk�2	11��21 with
k � N 1 2 for even N and k � N 1 3 for odd N . We have
studied the convergence of the determinant in Eq. (11) as
for the case of the particle density profile.

In Fig. 2 the kinetic pressure P�x� is plotted for N � 5,
10, and 20 with M � 105 and ´ � 0.01, together with the
profiles PLDA�x� evaluated in the Thomas-Fermi approxi-
mation,

PLDA �
1

3p
�2N 2 x2�3�2. (16)

The exact kinetic pressure shows N oscillations and has the
peculiarity of being negative in the tails. This microscopic
quantum effect, which is missing in the local density de-
scription, reflects the fact that in the low density region the
kinetic energy decreases with increasing density. We have
checked that our results agree with those reported in [18]
for N � 1 and 2, and carried out the calculation of P�x� up
to N � 1000. The kinetic pressure profile for N � 1000,
as shown in Fig. 3, looks almost indistinguishable from
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FIG. 2. Exact kinetic pressure profile (bold lines) for N � 5,
10, and 20 harmonically confined fermions, compared with the
profiles evaluated in the local density approximation. Positions
are in units of aho �

p
h̄��mv� and the kinetic pressure in units

of h̄va21
ho .
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FIG. 3. Exact kinetic pressure profile (bold lines) for N �
1000, compared with the profile evaluated in the local density
approximation. The inset shows an enlarged view of the tail
of the profiles. The units are as in Fig. 2. In this calculation
we have employed a matrix of dimension M � 107 and chosen
´ � 1023 (see notations in the text).

the LDA prediction but still presents a region of negative
kinetic pressure in the tails (inset of Fig. 3).

In conclusion, in this Letter we have given a general for-
mula for the exact particle density and kinetic pressure pro-
files of a 1D many-fermion system in terms of a Green’s
operator in coordinate space. We have made use of the deci-
mation/renormalization procedure and of other recursive
techniques, originally developed to evaluate the spectral
properties of quasi-1D systems in solid state physics, to ef-
ficiently calculate the exact density profiles of a harmoni-
cally confined noninteracting Fermi gas. Within the same
general scheme the particle density could also be evaluated
by employing a suitable Kirkman-Pendry relation [21], as
will be reported elsewhere. We have verified that for large
number of atoms �N � 1000� the local density approxima-
tion reproduces reasonably well the exact profiles except
for the region of the tails, where the exact kinetic pressure
is negative.

We believe that the present method opens the way for a
novel approach to the equilibrium properties of spatially in-
homogeneous 1D systems. The expressions here derived
can be extended to finite temperature and to calculate partial
density profiles for subgroups of atoms. The kinetic-energy
density functional can be studied through the calculation
of the function P�x�n�	�2, where x�n� is obtained by local
inversion of the exact profile n�x�. Pressure fluctuations
will become accessible to study through the evaluation
of higher moments of the one-body density matrix. The
density profiles of the harmonically trapped Fermi gas in
1D, showing a prominent shell structure as displayed in
our calculations, could become observable in experiments
on alkali vapors.
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