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Geometric Phases for Mixed States in Interferometry
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We provide a physical prescription based on interferometry for introducing the total phase of a mixed
state undergoing unitary evolution, which has been an elusive concept in the past. We define the parallel
transport condition that provides a connection form for obtaining the geometric phase for mixed states.
The expression for the geometric phase for mixed state reduces to well known formulas in the pure state
case when a system undergoes noncyclic and unitary quantum evolution.

PACS numbers: 03.65.Bz, 07.60.Ly, 42.50.Dv
When a pure quantal state undergoes cyclic evolution
the system returns to its original state but may acquire a
phase factor of purely geometric origin. Though this was
realized in the adiabatic context [1], the nonadiabatic gen-
eralization was found in [2]. Based on Pancharatnam’s
[3] earlier work, this concept was generalized to noncyclic
evolutions of quantum systems [4]. Subsequently, the kine-
matic approach [5] and gauge potential description [6,7]
of geometric phases for noncyclic and non-Schrödinger
evolutions were provided. The adiabatic Berry phase and
Hannay angle for open paths were introduced [8] and dis-
cussed [9]. The noncyclic geometric phase has been gen-
eralized to non-Abelian cases [10]. Applications of the
geometric phase have been found in molecular dynamics
[11], response function of the many-body system [12,13],
and geometric quantum computation [14,15]. The non-
cyclic geometric phase for entangled states has also been
studied [16]. In all these developments the geometric
phase has been discussed only for pure states. However,
in some applications, in particular, geometric fault toler-
ant quantum computation [14,15], we are primarily inter-
ested in mixed state cases. Uhlmann was probably the
first to address the issue of mixed state holonomy, but
as a purely mathematical problem [17,18]. In contrast,
here we provide a new formalism of the geometric phase
0031-9007�00�85(14)�2845(5)$15.00
for mixed states in the experimental context of quantum
interferometry.

The purpose of this Letter is to provide an operationally
well defined notion of phase for unitarily evolving mixed
quantal states in interferometry, which has been an elusive
concept in the past. This phase fulfills two central prop-
erties that makes it a natural generalization of the pure
case: (i) it gives rise to a linear shift of the interference
oscillations produced by a variable U�1� phase and (ii) it
reduces to the Pancharatnam connection [3] for pure states.
We introduce the notion of parallel transport based on our
defintion of total phase. We moreover introduce a concept
of geometric phase for unitarily evolving mixed quantal
states. This geometric phase reduces to the standard geo-
metric phase [5–7] for pure states undergoing noncyclic
unitary evolution. The interferometer scheme used in this
work has the advantage that it suggests a direct method to
test the geometric phase for mixed states and that it pro-
vides the notion of phase and parallel transport for mixed
states in a straightforward way. In addition, we also pro-
vide a conceptual alternative to these results based on a
purification procedure.

Mixed states, phases and interference.—Consider
a conventional Mach-Zehnder interferometer in which
the beam pair spans a two dimensional Hilbert space
© 2000 The American Physical Society 2845
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H̃ � �j0̃�, j1̃��. The state vectors j0̃� and j1̃� can be taken
as wave packets that move in two given directions defined
by the geometry of the interferometer. In this basis, we
may represent mirrors, beam splitters, and relative U�1�
phase shifts by the unitary operators
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0 1
1 0

∂
, ŨB �

1
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1 i
i 1
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respectively. An input pure state r̃in � j0̃� �0̃j of the inter-
ferometer transforms into the output state
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that yields the intensity along j0̃� as I ~ 1 1 cosx . Thus
the relative U�1� phase x could be observed in the output
signal of the interferometer.

Now assume that the particles carry additional internal
degrees of freedom, e.g., spin. This internal spin space
Hi � CN is spanned by the vectors jk�, k � 1, 2, . . . , N ,
chosen so that the associated density operator is initially
diagonal,

r0 �
X
k

wkjk� �kj , (3)

with wk the classical probability to find a member of the
ensemble in the pure state jk�. The density operator could
be made to change inside the interferometer

r0 ! Uir0U
y
i , (4)

with Ui a unitary transformation acting only on the inter-
nal degrees of freedom. Mirrors and beam splitters are
assumed to leave the internal state unchanged so that we
may replace ŨM and ŨB by UM � ŨM ≠ 1i and UB �
ŨB ≠ 1i , respectively, 1i being the internal unit operator.
Furthermore, we introduce the unitary transformation

U �

µ
0 0
0 1

∂
≠ Ui 1

µ
eix 0
0 0

∂
≠ 1i . (5)

The operators UM , UB, and U act on the full Hilbert space
H̃ ≠ Hi . U corresponds to the application of Ui along
the j1̃� path and the U�1� phase x similarly along j0̃�.
We use U to generalize the notion of phase to unitarily
evolving mixed states.

Let an incoming state given by the density matrix �in �
r̃in ≠ r0 � j0̃� �0̃j ≠ r0 be split coherently by a beam
splitter and recombine at a second beam splitter after be-
ing reflected by two mirrors. Suppose that U is applied
between the first beam splitter and the mirror pair. The
incoming state transforms into the output state

�out � UBUMUUB�inUy
BUyUy

MUy
B . (6)

Inserting Eqs. (1) and (5) into Eq. (6) yields
2846
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The output intensity along j0̃� is

I ~ Tr�Uir0U
y
i 1 r0 1 e2ixUir0 1 eixr0U

y
i �

~ 1 1 jTr�Uir0�j cos	x 2 arg Tr�Uir0�
 , (8)

where we have used Tr�r0U
y
i � � 	Tr�Uir0�
�.

The important observation from Eq. (8) is that the inter-
ference oscillations produced by the variable U�1� phase x

is shifted by f � arg Tr�Uir0� for any internal input state
r0, be it mixed or pure. This phase difference reduces for
pure states r0 � jc0� �c0j to the Pancharatnam phase dif-
ference between Uijc0� and jc0�. These two latter facts
are the central properties for f being a natural generaliza-
tion of the pure state phase. Moreover, the visibility of the
interference pattern is n � jTr�Uir0�j $ 0, which reduces
to the expected n � j�c0jUijc0�j for pure states.

The output intensity in Eq. (8) may be understood as
an incoherent weighted average of pure state interference
profiles as follows. The state k gives rise to the interference
profile [19,20]

Ik ~ 1 1 nk cos	x 2 fk
 , (9)

where nk � j�kjUijk�j and fk � arg�kjUijk�. This yields
the total output intensity

I �
X
k

wkIk ~ 1 1
X
k

wknk cos	x 2 fk
 , (10)

which is the incoherent classical average of the above
single-state interference profiles weighted by the corre-
sponding probabilities wk . Equation (10) may be writ-
ten in the desired form 1 1 ñ cos�x 2 f̃� by making the
identifications

f̃ � arg

µX
k

wknkeifk

∂
� arg Tr�Uir0� � f ,

ñ �

ÇX
k

wknkeifk

Ç
� jTr�Uir0�j � n .

(11)

Parallel transport condition and geometric phase.—
Consider a continuous unitary transformation of the
mixed state given by r�t� � U�t�r0Uy�t�. (From now
on, we omit the subscript “i” of U.) We say that the
state of the system r�t� acquires a phase with respect
to r0 if arg Tr	U�t�r0
 is nonvanishing. Now if we
want to parallel transport a mixed state r�t� along an
arbitrary path, then at each instant of time the state
must be in phase with the state at an infinitesimal time.
The state at time t 1 dt is related to the state at time
t as r�t 1 dt� � U�t 1 dt�Uy�t�r�t�U�t�Uy�t 1 dt�.
Therefore, the phase difference between r�t� and
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r�t 1 dt� is arg Tr	r�t�U�t 1 dt�Uy�t�
. We can
say r�t� and r�t 1 dt� are in phase if Tr	r�t�U�t 1

dt�Uy�t�
 is real and positive. This condition can be
regarded as a generalization of Pancharatnam’s connection
from pure to mixed states. However, from normalization
and Hermiticity of r�t� it follows that Tr	r�t� �U�t�Uy�t�

is purely imaginary. Hence the above mixed state gener-
alization of Pancharatnam’s connection can be met only
when

Tr	r�t� �U�t�Uy�t�
 � 0 . (12)

This is the parallel transport condition for mixed states
undergoing unitary evolution. On the space of den-
sity matrices the above condition can be translated to
Tr	r dU Uy
 � 0, where d is the exterior derivative on
the space of density operators. However, r�t� determines
the N 3 N matrix U�t� (N being the dimension of the
Hilbert space) up to N phase factors, and the single
condition Eq. (12) while necessary is not sufficient to
determine U�t�. These N phase factors are fixed by the
N parallel transport condition [19]

�k�t�j �U�t�Uy�t� jk�t�� � 0, k � 1, 2, . . . , N , (13)

where the jk�t��’s are orthonormal eigenstates of r�t�.
These are sufficient to determine the parallel transport op-
erator U�t� if we are given a nondegenerate density matrix
r�t�.

The parallel transport condition for a mixed state pro-
vides us a connection in the space of density operators
which can be used to define the geometric phase. Thus
a mixed state can acquire pure geometric phase if it un-
dergoes parallel transport along an arbitrary curve. One
can check that if we have a pure state density operator
r�t� � jc�t�� �c�t�� then the parallel transport condition
Eq. (12) reduces to �c�t� j �c�t�� � 0 as has been discussed
in [2,4–7,21,22] which is both necessary and sufficient.

Now we can define a geometric phase for mixed state
evolution. Let the state trace out an open unitary curve G:
t [ 	0, t
 ! r�t� � U�t�r0Uy�t� in the space of density
operators with “end points” r�0� � r0 and r�t�, where
U�t� satisfies Eq. (12). The evolution need not be cyclic,
i.e., r�t� fi r0. We can naturally assign a geometric phase
gg	G
 to this curve once we notice that the dynamical
phase vanishes identically. The dynamical phase is the
time integral of the average of Hamiltonian and can be
defined as

gd � 2
1
h̄

Z t

0
dt Tr	r�t�H�t�


� 2i
Z t

0
dt Tr	r0Uy�t� �U�t�
 . (14)

Since the density matrix undergoes parallel transport evo-
lution the dynamical phase vanishes identically. More-
over, the parallel transport operator U�t� should fulfill the
stronger condition Eq. (13). Thus the geometric phase for
a mixed state is defined as
gg	G
 � f � arg Tr	r0U�t�
 � arg

µX
k

wknkeibk

∂
,

(15)

where exp�ibk� are geometric phase factors associated
with the individual pure state paths in the given ensemble.
The above geometric phase can be given a gauge potential
description such that the line integral will give the open
path geometric phase for mixed state evolution. Indeed
the mixed state holonomy can be expressed as

gg	G
 �
Z

dt i Tr	r0Wy�t� �W�t�


�
Z

G
i Tr	r0WydW
 �

Z
G

V , (16)

where

W�t� �
Tr	r0Uy�t�

jTr	r0Uy�t�
j

U�t� (17)

and U�t� satisfies (13). The quantity V � i Tr	r0WydW 

can be regarded as a gauge potential on the space of density
operators pertaining to the system.

The geometric phase defined above is manifestly gauge
invariant; it does not depend explicitly on the dynamics, but
it depends only on the geometry of the open unitary path G

in the space of density operators pertaining to the system.
It is also independent of the rate at which the system is
transported in the quantum state space. The geometric
phase Eq. (16) can also be expressed in terms of an average
connection form

gg	G
 �
Z

G

X
k

wki�xk j dxk� �
Z

G

X
k

wkVk , (18)

where Vk is the connection form and jxk�t�� � W�t� jk�
is the “reference section” for the kth component in the en-
semble. To be sure, what we have defined is consistent
with known results; we can check that this expression re-
duces to the standard geometric phase [5–7]

gg	G
 � arg�c�0� jc�t�� �
Z t

0
dt i�x�t� j �x�t�� (19)

for a pure state r�t� � jc�t�� �c�t�j when it satisfies par-
allel transport condition. Here, jx�t�� is a reference state,
which gives the generalized connection one form [6,7].

Purification.—An alternative approach to the above re-
sults is given by lifting the mixed state into a purified state
jC� by attaching an ancilla. It is known that any mixed
state can be obtained by tracing out some degrees of free-
dom of a larger system which was in a pure state

jC� �
X
k

p
wk jk�sjk�a , (20)

where jk�a is a basis in an auxiliary Hilbert space, describ-
ing everything else apart from the spatial and the spin de-
grees of freedom. The existence of the above purification
requires that the dimensionality of the auxiliary Hilbert
2847
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space is at least as large as that of the internal Hilbert space.
If jC� is the state at time t � 0 and it is transformed to
jC�t�� by a local unitary operator U�t� � Us�t� ≠ Ia then

jC�t�� �
X
k

p
wk Us�t� jk�sjk�a . (21)

The inner product of the initial and the final state

�C�0� jC�t�� �
X
k

wk�kjU�t� jk� � Tr	U�t�r0
 (22)

gives the full description of the modified interference.
Indeed by comparing Eqs. (8) and (22), we see that
arg�C�0� jC�t�� is the phase shift and j�C�0� jC�t��j
is the visibility of the output intensity obtained in an
interferometer.

The parallel transport condition, given by Eq. (12), fol-
lows immediately from the pure state case when applied to
any purification of r0, i.e.,

0 � �C�t� j �C�t�� �
X
k

wk�kjUy�t� �U�t� jk�

� Tr	r0Uy�t� �U�t�
 � Tr	r�t� �U�t�Uy�t�
 . (23)

Thus a parallel transport of a density operator r�t� amounts
to a parallel transport of any of its purifications.

Example.—Consider a qubit (a spin- 1
2 particle) whose

density matrix can be written as

r �
1
2

�1 1 r r̂ ? s � , (24)

where r̂ is a unit vector and r is the constant for unitary
evolution. The pure states r � 1 define the unit Bloch
sphere containing the mixed states r , 1. Suppose that
during the time evolution r̂ traces out a curve on the Bloch
sphere that subtends a geodesically closed solid angle V

[21]. The two pure states j6; r̂ ? s � acquire noncyclic
geometric phase 7V�2 and identical visibility n1 �
n2 � h. Using Eq. (15) we obtain the geometric phase
for G

f � gg	G
 � 2 arctan

µ
r tan

V

2

∂
. (25)

The visibility n � jTr�Ur0�j is given by

n � h

s
cos2 V

2
1 r2 sin2 V

2
. (26)

For cyclic evolution we have h � 1 but the mixed state
n fi 1 due to the square root factor on the right-hand side
of Eq. (26). Moreover, Eqs. (25) and (26) reduce to the
usual expressions for pure states f � 2V�2 and n � h

by letting r � 1.
In the case of maximally mixed states r � 0 we obtain

f � arg cos�V�2� and n � j cos�V�2�j. Thus the output
intensity for such states is
2848
I ~ 11

Ç
cos

V

2

Ç
cos

∑
x 2 arg cos

V

2

∏

� 1 1 cos
V

2
cosx . (27)

Early experiments [23–25] to test the 4p symmetry
of spinors utilized unpolarized neutrons. Equation (27)
shows that in these experiments the sign change for
V � 2p is a consequence of the phase shift f �
arg cosp � p .

Note that gg	G
 in Eq. (25) equals the geodesically
closed solid angle on the Poincaré sphere if and only if
r � 1. In the mixed state case the geometric phase factor
is the weighted average of the solid angles subtended by
the two pure state paths on the Bloch sphere.

In conclusion, we have provided a physical prescription
based on interferometry for introducing a concept of total
phase for mixed states undergoing unitary evolution. We
have provided the necessary and sufficient condition for
parallel transport of a mixed state and introduced a con-
cept of geometric phase for mixed states when it undergoes
parallel transport. This reduces to known formulas for the
pure state case when the system follows noncyclic and uni-
tary quantum evolutions. We have also provided a gauge
potential for noncyclic evolutions of mixed states whose
line integral gives the geometric phase. We hope this will
lead to an experimental test of geometric phases for mixed
states and a further generalization of it to nonunitary and
nonlinear evolutions.
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