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Suppression of the Order Parameter Correlation Length by Inhomogeneous Strains
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Very recently we presented puzzling results of diffuse neutron scattering experiments on KSCN
and RbSCN. The data yield an increase of the diffuse intensity with increasing temperature below
Tc, whereas the width remains constant. Using molecular dynamics and 3D Monte Carlo simu-
lations, we have shown that below Tc the width of the correlation functions can be stabilized by strain
fields originating from the order parameter strain interactions. Here we construct a novel analytic model
which predicts the existence of a second characteristic length scale and explains the suppression of the
growth of precursor clusters by the influence of inhomogeneous strain fields.

PACS numbers: 64.60.Cn, 05.70.Ln, 44.30.+v, 62.20.Dc
A qualitative and quantitative understanding of the role
of inhomogeneous strains in phase transitions is of vi-
tal interest for the physics of minerals [1,2], alloys [3],
molecular crystals [4], high-Tc superconductors [5], as
well as the analysis of structural phase transitions in gen-
eral. Strain effects influence the behavior of materials in an
essential way, both on a macroscopic scale, i.e., the ther-
modynamic behavior [6] as well as the mesoscopic struc-
ture, i.e., domains and domain walls, phase boundaries,
or nucleation near a phase transition. Especially, there is
a long tradition of studying the effects of elastic interac-
tions, e.g., on the morphology and growth of precipitates
[7] in phase separating alloys. In a simple but quite use-
ful Landau-Ginzburg approach solids are often treated as
elastic continua. On the other hand, it is well known that
for understanding phenomena like the formation of small
precipitates in alloys, e.g., Guinier-Preston zones, discrete-
ness effects are essential and dispersion of the elastic en-
ergy must be taken into account [8]. Unfortunately, even
if the elastic energy is calculated exactly for 3D lattices of
simple structure, the resulting discrete models are as a rule
analytically intractable and one has to resort to computer
simulations [7].

The present work is based on a simple, general, transpar-
ent and ready-to-use analytic approach without reference
to a particular lattice symmetry, which is suitable for both
qualitative and quantitative discussions. This model was
constructed following a detailed analysis of transitional
precursor effects in KSCN and RbSCN found in diffuse
neutron scattering [9–11], accompanied by both molecu-
lar dynamics [11] and 3D Monte Carlo [12] simulations.
Both crystals exhibit order-disorder phase transitions with
reorientations of SCN molecules at Tc � 415 K (KSCN)
and 440 K (RbSCN) from a tetragonal to an orthorhombic
structure. For both substances the temperature dependence
of the superstructure Bragg peak IB�qc� ~ h2 can be well
fitted by a compressible pseudospin model [13] over a large
temperature region below Tc, exhibiting a strong coupling
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between the order parameter �h� and the strains �e�, which,
due to symmetry, is of the type h2e.

However, the interpretation of the diffuse scattering
below Tc is by no means straightforward. The diffuse
neutron scattering measurements were done in the vicinity
of the critical wave vector qc � �2p�a, 0, 0� and equiva-
lent points, i.e., for Q1 � �2p�a 1 qx , 0, 0�, Q2 � �2p�
a, qy , 0�, and Q3 � �2p�a, 0, qz�, where a is the lattice
constant. In both phases we have found diffuse scattering
intensities Id�Qi� centered around these points which in-
crease when approaching Tc. Above Tc the inverse widths
of the peaks also increase, but below Tc the width of the
diffuse scattering remains constant (Fig. 1). This behavior,
which is confirmed by the molecular-dynamics simula-
tions (Fig. 2), is in sharp contrast to what is expected from
a standard Landau theory description. For i � 1, 3 it suf-
fices [14] to compute kBTx11�q� � �h1qh12q� ~ Id�Qi�.
In doing so, the Landau free energy is usually altered
by order parameter gradient terms to account for spatial
fluctuations, yielding a Lorentzian shape of x11�q�. How-
ever, from such a standard theory one obtains the result
[15] that the �q � 0� component of the diffuse intensity
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FIG. 1. Measured T dependence of Id�0� and w21�T � below Tc.
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FIG. 2. Molecular-dynamics simulation of Id�0� and w21�T� below Tc. Fluctuations into the four different domain states are
indicated by different gray scales.
should follow the same temperature dependence as the
square of the order parameter correlation length. Below
Tc, this clearly contradicts the results of both experiment
and computer simulations. This puzzling discrepancy,
an immediate consequence of the Lorentzian type of
correlation function calculated in q space, represents a
long-standing problem [9]. The precursor clusters seem to
be prevented from growing in size in the ordered phase,
whereas their number increases when approaching Tc

from below. In contrast, note that both the size and the
number of the clusters do increase approaching Tc from
above. In this Letter we show that the elastic energy
stored in the cluster formation is responsible for the
effects described above. This is already indicated by
our observations in models using molecular dynamics
[11] and Monte Carlo simulations [12]. However, from
these simulations it is difficult to disentangle the various
contributions of the order parameter strain interactions,
and the actual mechanism of how the elastic interactions
really stabilize the average cluster size is far from being
transparent.

To explain the deviation from the standard behavior
x11�T ��j2�T � � const, significant additional gradient-
type terms must play a prominent role, leading to a more
complicated T -dependent wave-vector contribution to the
susceptibility. In fact, as was pointed out in [16], for
example, the quadratic-linear strain coupling does lead
to an additional q dependence of x11�q�—however, this
contribution depends only on the direction of q, whereas
here a nontrivial jqj dependence is observed. Comparing
the order of magnitude of w21�T � experimentally obtained
in Ref. [9] to the KSCN lattice constants, one realizes that
2766
the discrete nature of the system should play a noticeable
role in the problem.

To account for the discreteness of the solid, the first cor-
rection to a continuous strain field is the inclusion of an
additional strain gradient term in the free energy. We are
therefore led to study models of the following general type:
Let h�x� :� �h1�x�, . . . , hd�x�� denote a d-component
order parameter field, eij�x� �

1
2 � ≠ui

≠xj
1

≠uj
≠xi

� �x� the strain
tensor field resulting from a displacement vector field u�x�.
We consider the Landau-Ginzburg-type density

H �h, e� :�
1
V
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1
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i,j�1 k

ij
mn≠ihm�x� 3

≠jhn�x� and V is the system volume. Decomposing
hm�x� � hm 1

P
q dhmqeixq and ea�x� � ea 1

P
q 3

dẽa�q�eiqx into mean field and fluctuating degrees of
freedom, making use of the mean-field equilibrium condi-
tions ≠F�≠hmj�h,e� � ≠F�≠eaj�h,e� � 0 and suppressing
anharmonic higher order terms, we obtain an expansion of
H �h, e� into homogeneous and harmonic parts with re-
spect to the Fourier modes of h�x� and eij�x�. For q fi 0,
however, the inhomogeneous strain contributions ẽa�q�
are not proper degrees of freedom of the system [17]. In-
stead, the modes ẽa�q fi 0� must be further decomposed
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in terms of the displacement Fourier modes according
to dẽij�q fi 0� � 2

i
2 �qiũj�q� 1 qjũi�q��. Introducing

the formal vectors f :� �h10, . . . , hd0, ẽ1�0�, . . . , ẽ6�0��
and c�q� :� �h1q, . . . , hdq, ũ1�q�, ũ2�q�, ũ3�q��, the ab-
breviation kmn�q� :�

P
i,j k

ij
mnqiqj and the Voigt symbol

y�i j j� :� 2 2 dij, the resulting decomposition is

H �h, e� � F�h, e� 1
1
2

d16X
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Nij�h, e�fifj

1
1
2

d13X
i,j�1

Mij�q; h, e�ci�q�cj�2q� 1 · · · .

(2)

The matrix M�q; h, e� � �Mik�q; h, e��d13
i,k�0 with sub-

matrix cM�q; h, e� � �Md1i,d1k�q; h, e��3
i,k�1 is defined

as [18]
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cM�q; h, e� can be regarded as a generalized dynamical
phonon matrix. From these completely general equations
it is straightforward to deduce the order parameter sus-
ceptibilities within mean-field approximation as xmn�q fi

0� � �hmqhn2q���kBT � � M21
mn �q; h, e�. For instance, in

case of a scalar order parameter h (i.e., d � 1) this yields
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. (7)

Let us study the consequences of this result for the
simplest yet analytically tractable model that still con-
tains all the basic features. Consider an isotropic cubic
�C1111 2 C1122 � 2C1212� system where k�q� � Dq2,
gijklmn � gdikdjldmny�i j j�y�k j l�, yielding a strain
gradient density of g

P
ijm�y�i j j�=meij�x��2, and

F�h, e� � V �h� 1 bh2
P3

i�1 ei 1
1
2

P6
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assuming D, g, b . 0. Then [19]
x21�q� � Dq2 1 V 00�h� 2
6b2h2

C1111 1 2C1122

2
4b2h2

gq2 1 C1111
. (8)

Obviously, below Tc this function is non-Lorentzian.
Therefore one must not confuse its inverse half-width
w21�T� with the order parameter correlation length j�T �.
Instead, x�q� can actually be split into a sum of two
Lorentzians below Tc. Using the abbreviations e :�
4b2h2, y � V 00�h� 2 6b2h2��C1111 1 2C1122�, c :�
C1111, we have x�q� � l1�q� 1 l2�q� � x1

a1q211 1
x2

a2q211 , where

x6 :�
1

2�y 2 e�c�

∑
1 7

gy 2 cD 2 2ge�cp
�gy 2 cD�2 1 4egD

∏
,

(9)
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∑
gy 1 cD

6

q
�gy 2 cD�2 1 4egD

∏
.

(10)

This defines two characteristic length scales j6�T � �
p

a6 for the model. We have l1�0� . l2�0� as long as
g�y 2 2e�c� , cD. For g ! 0, l1�q� ! 1

Dq21y2e�c
and, consistent with this, j1�T � reduces to the usual
Lorentzian correlation length

p
D��y 2 e�c�, while

j2 ! 0 together with l2�q� ! 0. Certainly j1�T � .

j2�T� for all stable systems. But this implies [20] that
j1�T� � j�T � is to be identified with the true order
parameter correlation length.

To study the qualitative consequences of the above
analysis, we reconsider our previous example for V �h� :�
A0

2 �T 2 T0� 1
B
4 h4, where A0, B 2 6b2��C1111 1

2C1122� . 0. The resulting mean-field model predicts
a continuous phase transition at Tc � T0. For T % Tc
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FIG. 3. Example: Decomposition of susceptibility accord-
ing to x�0� � l1�0� 1 l2�0� at T � 412 K. Parameters as
in Fig. 4.
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FIG. 4. Results according to Eqs. (8)– (10) using the model
parameters A0 � 2 3 104 J K21, T0 � 415 K, B � 3.125 3
106 J, C1111 � 1010 J, C1122 � 5.7 3 109 J, b � 108 J, D �
10211 m2 J, and g � 1026 m2 J. Inset: Plot of the correspond-
ing Levanyuk-Ginzburg criterion BkBT��j3�T �h2�T�� ø 1.

we have l1�q� ! 1
Dq2 , while l2�q� ! 0, reaching its

maximum below but close to Tc. l2 and j2 can thus be
regarded as describing a process which has its origin in
the presence of strain gradient energy and, depending on
the value of parameters, can be significant well below Tc

but becomes insignificant for T ! Tc only after passing
through a maximum value. It seems tempting to interpret
this process as the formation of strain from the surface of
h-precursor clusters, since the surface influence may be
significant for small cluster size j1�T � while becoming
negligible for j1 ! `. In essence, these additional strain
contributions accompanying order parameter fluctuations
may lead to a significant rise of the diffuse background to
be identified with l2. Also, for certain parameter values
we observe simultaneous stabilization of both correlation
length j1�T � and width w21�T � up to temperatures quite
close to Tc. Moreover, notice that while the experimental
determination of w21�T � from measurement of x�q� is
certainly not strongly affected by a particular choice of
fitting function, below Tc the actual order of magnitude
j1�T � of the average cluster size as calculated from a
susceptibility of type (7) may be much larger than w21�T�.

We illustrate our main results in Figs. 3 and 4, ensur-
ing the self-consistency of our mean-field approximation
below Tc outside a narrow critical region by a plot of
the Levanyuk-Ginzburg criterion BkBT��j3�T�h2�T �� ø
1. While the effects discussed can in fact be reproduced
using a large variety of parameters, we used a sample of
parameters representative [13] of KSCN in order of mag-
nitude. The qualitative agreement with scattering data ob-
tained both experimentally and from computer simulations
is excellent. As to the detailed quantitative interpretation of
2768
experimental results, analysis of the full anisotropic model
constructed above is in progress.
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