
VOLUME 85, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 25 SEPTEMBER 2000
Experimental Evidence of Dynamical Localization and Delocalization
in a Quasiperiodic Driven System
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This paper presents the first experimental evidence of the transition from dynamical localization to delo-
calization under the influence of a quasiperiodic driving on a quantum system. A quantum kicked rotator
is realized by placing cold atoms in a pulsed, far-detuned, standing wave. If the standing wave is periodi-
cally pulsed, one observes the suppression of the classical chaotic diffusion, i.e., dynamical localization.
If the standing wave is pulsed quasiperiodically, dynamical localization is observed or not, depending
on the driving frequencies being commensurable or incommensurable. One can thus study the transition
from the localized to the delocalized case as a function of the effective dimensionality of the system.

PACS numbers: 05.45.Mt, 32.80.Pj, 42.50.Vk, 72.15.Rn
Dynamical localization (DL) is a specifically quantum
phenomenon taking place in time-periodic systems whose
corresponding classical dynamics displays chaotic diffu-
sion. While in the classical limit, because of the diffusion
process, the system spreads indefinitely in the phase space,
the quantum system follows the classical diffusive dynam-
ics for a short time only but after some localization time
freezes its evolution with no further increase of the average
energy.

This behavior, attributed to quantum interferences
among the diffusive paths which for long times are in the
average completely destructive, was numerically observed
at the end of the 1970’s on the one-dimensional kicked
rotator exposed to periodic kicks [1], a paradigmatic
simple system whose classical dynamics can be reduced
to iterations of the Chirikov’s standard map.

The possibility of observing DL with a system consti-
tuted of cold atoms placed in a far-detuned standing wave
was theoretically suggested in 1992 [2] and experimentally
observed in 1994 [3]. A crucial question is whether DL is
robust versus perturbations of the system. Indeed, as it
strongly relies on quantum interferences, it is expected to
be rather fragile. As a matter of fact, it has been experi-
mentally shown that DL can be partly or totally destroyed
by decoherence (i.e., coupling of the system to external de-
grees of freedom; in the present context spontaneous emis-
sion plays such a role) and noise, that is, deviation from
strict periodicity [4,5].

Moreover, there is a relevant connection of DL with
the Anderson localization taking place in disordered sys-
tems. Indeed, the periodically kicked rotator problem can
be mapped on a one-dimensional Anderson model, that is a
model of a particle moving along a one-dimensional chain
of sites [6], with coupling between neighbors and diago-
nal disorder, i.e., pseudorandom values of the potential en-
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ergies on each site. In 1D, although the classical motion is
diffusive, the quantum eigenstates are all localized. Be-
cause of the similarity of the Anderson and kicked top
models, Anderson localization and DL are similar quan-
tum phenomena: the first one taking place along space co-
ordinates, the second one along the time coordinate with
localization in the momentum domain. It is well known
that Anderson localization is strongly dependent on the
number of spatial degrees of freedom. Similarly, DL is
expected to be highly sensitive to the number of temporal
degrees of freedom, that is on the frequency spectrum of
the external driving.

We consider here the interesting simple case where the
external driving is not periodic but quasiperiodic, with two
independent frequencies. Theoretical arguments and nu-
merical simulations [7] suggest that the situation is similar
to the 2D Anderson model, and that the localization time
should become so large that it might be impossible to ob-
serve DL experimentally. The goal of this paper is to study
experimentally such a situation of increased dimensional-
ity and to test the theoretical predictions.

We realized a quantum kicked rotator with a primary
series of kicks of frequency f1 to which a secondary series
of kicks (frequency f2) can be added, with f2�f1 � r . A
physical experiment cannot be sensitive to the rational or
irrational character of a number; one might thus consider
only rational values of this frequency ratio. For a given ra-
tional value of r � p�q (irreducible fraction), the period-
icity of the system cannot have any physical effect before at
least q kicks of the primary series. Thus, periodicity effects
like DL cannot show up unless the number of primary kicks
is large compared to q. As the number of primary kicks
increases, one expects to find more and more “rational”
values of p�q for which DL is effectively observed. Work-
ing with a two-frequency quantum rotator thus allows one
© 2000 The American Physical Society 2741
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to go from the 1D to the 2D case by choosing irreducible
frequency ratios corresponding to larger and larger q [7].
Experimental results on the two-frequency microwave ion-
ization of Rydberg atoms have indirectly shown the impor-
tance of rational or irrational values in quantum transport
properties [8].

The atomic quantum kicked rotator is realized by placing
cold atoms (cesium in our case) of mass M in a far-detuned,
pulsed standing wave of intensity I0, wave number kL, and
detuning D with respect to the closest atomic transition
(the cesium D2 line at 852 nm). If the detuning is large
enough, the dominant interaction between atoms and the
laser light is the light potential which is proportional to the
intensity. One then obtains a Hamiltonian of the form

H �
p2

2M
2 V0 cos�2kLx�f�t� , (1)

where f�t� is a function of period T , and V0 � h̄V2�8D,
where V is the resonant Rabi frequency. V0 is proportional
to the light intensity.

In the limit where the width of the peaks in f�t� is
negligible compared to T (i.e., each peak approaches a
delta function), rescaling variables [2] allow one to reduce
this Hamiltonian to the standard form corresponding to the
quantum rotator:

H1 �
P2

2
2 K cosu

X
n

d�t 2 n� , (2)

where K is the so-called stochasticity parameter and where
the new conjugate variables obey the quantum commuta-
tion rule �u, P� � ih̄eff with h̄eff � 4h̄kLT�M the effec-
tive Planck constant. The classical limit (h̄eff ! 0) of such
a system becomes (weakly) chaotic for K � 1 and fully
chaotic for K � 10. When a second series of pulses is ap-
plied, the reduced Hamiltonian becomes

H2 �
P2

2
2 cosu

Ω
K1

X
n

d�t 2 n�

1 K2

X
n

d�t 2 �n 1 f�2p��r�
æ

, (3)

with K1 � K2 in our experiment. In the above equation
f is the phase of the second series of pulses with respect
to the first series. The classical dynamics of this system
is essentially identical to the periodic kicked rotator: for
K1 � K2 � 10, it is a chaotic diffusion.

Our realization of the kicked rotator (Fig. 1) is similar
to that of Ref. [5]. Cold cesium atoms issued from a
magneto-optical trap (MOT) are placed in a far-detuned,
pulsed standing wave. The measurement of momentum
distribution is accomplished in our setup by velocity-
selective Raman stimulated transitions between the Fg � 3
and Fg � 4 hyperfine ground-state sublevels [9]. Gen-
eration of the Raman beams is based on direct current
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FIG. 1. Experimental setup. A master diode laser modulated at
4.6 GHz is used to inject two power slave Raman lasers produc-
ing phase-coherent, 9.2 GHz frequency-split, Raman beams. A
power monomode diode laser is used to generate the stationary
wave that can be pulsed through an acousto-optical modulator
(mounted in double passing). Both the Raman and stationary
wave beams are horizontal, making an angle of 12±.

modulation at 4.6 GHz of a diode laser, detuned by
200 GHz with respect to the atomic transition. The two
symmetric first-order optical sidebands are then used to
inject two diode lasers that produce 150 mW beams with
a 9.2 GHz beat note of subhertz spectral width [10].

Cesium atoms are first optically pumped into the Fg �
3 hyperfine sublevel. A Raman pulse of detuning dR brings
the atoms in the velocity class y � dR��2kR� (kR is the
wave number of the Raman beams) back to the Fg � 4
hyperfine sublevel. A probe beam resonant with the transi-
tion from the sublevel Fg � 4 is frequency modulated, and
its absorption signal detected by a lock-in amplifier, yield-
ing a signal proportional to the population of the Fg � 4
level.

Stray magnetic fields are harmful for the Raman veloc-
ity measurement. 3D magnetoresistive probes are placed
at the eight corners of the MOT cell. Their signal is elec-
tronically interpolated and generates a feedback signal to
three mutually orthogonal Helmholtz coil pairs [11]. We
measured a residual magnetic field below 250 mG and an
effective compensation bandwidth of 500 Hz. The h̄kL�2
momentum resolution then obtained is largely sufficient
for this experiment and is much better than that obtained
by time-of-flight methods [5].

A power diode laser is detuned by 7 GHz with respect to
the cesium D2 line at 852 nm. An acousto-optical modu-
lator is used to generate arbitrary series of pulses. The
modulated beam is then transported by an optical fiber to
the neighborhood of the MOT apparatus. The standing
wave, obtained by backreflection of this beam, has a waist
of 0.6 mm and a typical power of 50 mW in each direction.
It is modulated with two series of pulses: the primary
pulses of fixed frequency f1 � 36 kHz are 500 ns long,
corresponding to a stochasticity parameter K1 � 10 and to
an effective Planck constant h̄eff � 2.9. The pulse shape
is rectangular with a rise and a fall time of the order of
50 ns. The secondary pulses have the same duration and
the same intensity, but their frequency f2 and phase f



VOLUME 85, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 25 SEPTEMBER 2000
can be adjusted at will. A typical experiment is done with
50 primary pulses. In order to avoid pulse superposition
effects between the two series, the phase f is fixed to an
arbitrary nonzero value.

In an experimental run, cesium atoms are first cooled
and trapped by the MOT. A Sisyphus-molasses phase
further reduces the temperature to about 3.3 mK. The
MOT beams and the magnetic field gradient are turned
off and a pulse of a repumper beam transfers the atoms
from the Fg � 4 to the Fg � 3 hyperfine sublevel. The
standing wave is then turned on. When the standing wave
excitation ends, the Raman sequence described above is
used to detect the population of a velocity class. The
whole sequence then starts over with a different value
of the Raman detuning to probe a new velocity class.
The pulse sequence is produced by two synthesizers at
frequencies f1 and f2 with a fixed phase relation. We
show in Fig. 2 the initial momentum distribution (just be-
fore the kicks are applied) and the final distributions (af-
ter interaction with the standing wave) for f2�f1 � 1.000
and f2�f1 � 1.083 and a phase of f � 180±. The ini-
tial distribution is a Gaussian with a typical full width at
half maximum (FWHM) of 10h̄kL. Both final distributions
show a clear broadening with respect to the initial one.
For the “resonant” case (f2�f1 � 1) [trace (b)], the distri-
bution presents a characteristic exponential shape P�p� �
exp�2jpj�L�, with a localization length (along the mo-
mentum axis) L � 8.5h̄kL, which is a signature of the dy-
namical localization. This is not surprising as for f1 � f2
the system is strictly time periodic and thus should present
dynamical localization. The measured localization length
agrees fairly well with theoretical estimates. Trace (c) cor-
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FIG. 2. Typical momentum distributions (in logarithmic scale)
corresponding to curves (a) initial distribution produced by the
MOT, corresponding to a temperature of 3.3 mK; the fitting
curve (thin line) is a Gaussian. (b) Momentum distribution ob-
tained after the interaction of the atoms with two series of kicks
having f2 � f1 � 36 kHz and a relative phase f � 180±; it
displays the exponential shape characteristic of dynamical lo-
calization for a time-periodic quantum system; the fitting curve
is exponential (thin line). (c) Momentum distribution after in-
teraction with two series of kicks having f2�f1 � 1.0833 and
the initial relative phase f � 180±. The distribution is broader,
indicating the destruction of dynamical localization in a quasi-
periodic driven quantum system; the fitting curve is a numerical
simulation (thin line); for details, see text. The recoil momen-
tum is h̄kL.
responds to a nonresonant truly quasiperiodic case, where
the ratio f2�f1 � 1.083 is sufficiently far from any simple
rational number. The momentum distribution presents a
broader and more complex shape. We have performed nu-
merical simulations of the system, as described by Eq. (3):
we have solved “exactly” the Schrödinger equation using a
method similar to the one described in [12]. The resulting
momentum distribution is averaged over the measured ini-
tial momentum distribution of the atoms and over the inho-
mogeneous laser intensity. We have used K1 � K2 � 10
at the center of the laser beam, in accordance with the
value deduced from the laser power, detuning, and ge-
ometrical properties. The only adjustable parameter is
the ratio of effective sizes of the standing wave and the
Raman beams. Because of the nonlinearity of the pro-
cesses, this ratio (which is 2) is different from ratio of the
waists (4.8). For f1 � f2 � 36 kHz, we obtain a dynami-
cally localized (exponential) distribution with a localiza-
tion length which agrees with the experimentally observed
one (at the 10% level). For f2�f1 � 1.083, the result of
the simulation, shown in the figure, agrees very well with
the experimental data.

The fact that the broad contribution is significantly
larger than the resonant distribution— together with the
fact that the classical diffusion constant is practically iden-
tical in the two cases—shows that diffusion has persisted
during a longer time in the nonresonant case. Furthermore,
the fact that the distribution is not exponential strongly
suggests that we did not reach DL and that diffusion
should persist for longer times. A simple and useful
method to detect the presence of DL is to probe only
the zero-velocity class: as DL corresponds to a thinner
distribution, it also corresponds to a higher zero-velocity
signal in the localized case than in the diffusive case. In
other words, the zero-velocity signal contains essentially
the same information as, e.g., the total average energy
but is much easier to measure. This allows us to sweep
the frequency f2 of the secondary kick, keeping all other
parameters (f1, f, K1, and K2) fixed, and search for the
values of the frequency ratio presenting localization. The
result is shown in Fig. 3. One clearly sees peaks at the
simple rational values of r � f2�f1. Each peak is asso-
ciated with an increased number of zero-velocity atoms,
that is, an increased degree of localization. The most
prominent peaks are associated with integer values of r ,
a rather natural result. Smaller peaks are associated with
half-integer values of r , even smaller ones with r � p�3
rational numbers, etc. All these features are reproduced
very well by the numerical simulation (performed as
described above, with no adjustable parameter) shown in
the inset of Fig. 3. The fact that the simulation displays
exactly the same behavior proves that it is not due to an
experimental artifact. Classical numerical calculations
performed with the same parameters do not show any kind
of localization, neither in the rational nor in the irrational
case. The peaks are thus a purely quantum feature.
2743
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FIG. 3. The population of zero-velocity atoms (probed with the
Raman signal) as a function of the frequency ratio r � f2�f1
(with f1 � 36 kHz) and phase f � 52±. The increase of the
zero-velocity signal is a signature of dynamical localization. Dy-
namical localization for commensurate frequencies, and simple
rational r values, is clearly seen. For incommensurate frequen-
cies, as in Fig. 2, no dynamical localization is visible. The
inset (a) shows the corresponding curve obtained by numerical
simulation (see text), reproducing very well the features of the
experimental curve.

We have also checked that the observed behavior does
not sensitively change when f1 is varied. This rules out
the possible role of the so-called quantum resonances
where the dynamics is dominated by the quasidegeneracy
between unperturbed Floquet eigenstates. The observed
width of the 1:1 resonance is about 300 Hz, in good
agreement with the numerical calculation. A detailed
study of its width will be presented in the near future.

In conclusion, we have shown that, in the presence of a
quasiperiodic driving with two base frequencies, the kicked
rotator does not show any “short time” dynamical localiza-
tion except when the ratio of the frequencies is close to a
rational number. In the latter case, the system is time peri-
odic and displays clear evidence of dynamical localization.
This conclusion is drawn from experiments performed with
both 50 and 100 primary kicks, whereas the localization
time is of the order of 15 kicks. Longer kick sequences
are impossible because of the free fall of the atoms under
gravity, but numerical simulations show the same behav-
ior up to few thousands kicks. Although it is currently
impossible, experimentally or numerically, to decide if the
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DL is effectively suppressed by the secondary kicks or if it
corresponds to a much longer localization time, the results
presented here clearly evidence a dramatic change in the
behavior of the system due to a secondary irrational fre-
quency. Furthermore, the destruction of DL by a secondary
frequency is found to be a very sensitive phenomenon.
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