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Quantum Fingerprints of Classical Ruelle-Pollicott Resonances
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Quantum and classical correlations are studied experimentally in model n-disk microwave billiards.
The wave vector k autocorrelation C�k� of the quantum spectrum displays nonuniversal oscillations for
large k, comparable to the universal random matrix theory behavior observed for small k. The nonuni-
versal behavior is shown to be completely determined by the classical Ruelle-Pollicott resonances, arising
from the complex eigenvalues of the Perron-Frobenius operator, and calculated using periodic orbit the-
ory. This work establishes a fundamental connection between the quantum and classical correlations of
an open system.
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The quantum-classical correspondence for chaotic sys-
tems has been studied extensively in the context of uni-
versality and periodic orbit contributions. This approach
has focused on eigenvalues and eigenfunctions and their
statistical properties. Universality has been shown to arise
from random matrix theory (RMT) [1], while periodic or-
bit contributions have been analyzed in the semiclassical
scheme for calculations of eigenvalue spectra [2] and con-
structions of eigenfunctions [3].

An entirely different approach is to consider correlations
of observables. In the classical context a probabilistic ap-
proach is best taken with Liouvillian dynamics. In certain
classical systems these have been shown to lead to Ruelle-
Pollicott (RP) resonances [4,5], arising from complex
eigenvalues of the Perron-Frobenius operator. In open
systems, this leads to a quantitative description of the time
evolution of classical observables, the most common being
the particle density. In the quantum context, diffusive
transport has been argued to be intimately connected with
Liouvillian dynamics, not just in disordered systems where
the correspondence is made with nonlinear s-models of
supersymmetry [6] but also in individual chaotic systems
which represent a ballistic limit.

In this paper we present a microwave experiment which
demonstrates this deep connection between quantum prop-
erties and classical diffusion. Our experiment is a mi-
crowave realization of the well-known n-disk geometry,
which is a paradigm of an open quantum chaotic system,
along with other systems such as the Smale horseshoe and
the Baker map [7]. The classical scattering function of
the chaotic n-disk system is nondifferentiable and has a
self-similar fractal structure. A central property of this
fractal repeller is the exponential decay of an initial distri-
bution of classical particles, due to the unstable periodic
orbits, which form a Cantor set. This system has received
extensive theoretical attention both classically and quan-
tum mechanically. The experimental transmission spec-
trum directly yields the frequencies and the widths of the
low lying quantum resonances of the system [8,9], which
are in agreement with semiclassical periodic orbit calcula-
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tions [10–12]. The same spectra are analyzed to obtain the
spectral wave-vector autocorrelation C�k� [8]. The small
k , g

21
cl (long time) behavior of the spectral autocorrela-

tion is universal in that it is describable within RMT, and
provides a measure of the quantum escape rate gqm, and
was previously shown to be in good agreement with the
corresponding classical escape rate gcl [8].

In this paper, we show for the first time that nonuni-
versal contributions to C�k� for large k . g

21
cl , which

are of the same order as the universal RMT contribution
for k , g

21
cl , can be completely described in terms of

the classical RP resonances of the corresponding classi-
cal system. Excellent agreement is obtained between the
experimental C�k� and the contribution of the classical RP
resonances calculated using periodic orbit theory for the
n-disk system. Previous work, including our own, had
failed to provide a quantitative description of these nonuni-
versal contributions, which are system specific. In addition
to achieving a complete quantitative description of C�k�,
we are experimentally able to observe the classical RP
resonances in a quantum experiment, for the first time.

The experiments are carried out in thin microwave struc-
tures consisting of two highly conducting Cu plates about
55 3 55 cm in area and Cu disks of thickness d � 6 mm
placed between the plates and in contact with them. In
order to simulate an infinite system microwave absorber
material ECCOSORB AN-77 was sandwiched between
the plates at the edges. Microwaves were coupled in and
out using terminating coaxial lines which were inserted in
the vicinity of the scatterers. All measurements were car-
ried out using an HP8510B vector network analyzer which
measured the complex transmission (S21) and reflection
(S11) S parameters of the coax 1 scatterer system. See
[9] for details of the experiments. For all frequencies
f , fc � c�2d � 25 GHz (here c is the speed of light),
Maxwell’s equation for the experimental system is iden-
tical with the 2D time-independent Schrödinger equation
�=2 1 k2�C � 0 with C � Ez the z component of the
microwave electric field and k � 2pf�c. It is this map-
ping which enables us to study the quantum properties of
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the 2D systems. For all metallic objects between the plates,
Dirichlet boundary conditions apply inside the metal.
Similar microwave experiments, which exploit this quan-
tum mechanical–electromagnetic (QM-EM) mapping,
have been used to study quantum chaos in closed [13,14]
and open systems [8].

The transmission function S21� f� which we measure
is the response of the system at point �r2 due to a delta-
function excitation at point �r1, and is determined by
the wave function C at the probe locations �r1 and
�r2. In our experiments the coax lines act as tunneling
point contacts, and hence it can be shown [9] that
S21� f� � A� f�G��r1, �r2, k� is just the two-point Green’s
function G��r1, �r2, k�. The scaling function A� f� , which
represents the impedance characteristics of the coax lines
and probes, is sufficiently slowly varying and can be
treated as a constant.

The n-disk systems are investigated in the fundamental
domain [10], as shown in the inset of Fig. 1, with angles
90± (n � 2), 60± (n � 3), and 45± (n � 4). A typical
trace for the three-disk system is shown in Fig. 1. See [9]
for details of the comparison of the resonances between
experiments and semiclassical calculations. In this paper
we focus on the analysis of the spectral autocorrelation of
spectra exemplified by Fig. 1.

The spectral autocorrelation function was calculated as
[9] C�k� � �jS21�k 2 �k�2��j2jS21�k 1 �k�2��j2�k . The
average is carried out over a band of wave vector cen-
tered at certain value k0 and of width Dk. Since the trans-
mission function is the superposition of many resonances,
jS21�k�j2 �

P
i cik

0
i���k 2 ki�2 1 k02

i �, with ki 1 ik0
i the

semiclassical resonances and ci the coupling which depend
on the location of the probes, we have [15]
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FIG. 1. Transmission spectrum jS21�k�j2 of the three-disk
system in the fundamental domain with disk separation
R � 20

p
3 cm and radius a � 5 cm. The dashed line is the

semiclassical calculation. See Ref. [9] for details. Insets:
Geometry of the n-disk open billiard (n � 2, 3, 4). The solid
lines represent the fundamental domain in which the present
experiments were carried out.
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C�k� � p
X
i,j

cicj�k0
i 1 k0

j�
�k 2 �ki 2 kj��2 1 �k0

i 1 k0
j�2

. (1)

According to semiclassical theory [16–19], for small k,
the above sum can be replaced by a single Lorentzian

C�k� � C�0�
1

1 1 �k�g�2 , (2)

where g � gcl , the classical escape rate with the velocity
of the classical particles scaled to 1. The above equation
was used to fit the spectral autocorrelation for small k

and thus obtain the value of the experimental escape rate
gqm [8,9]. Good agreement of the escape rate is obtained
between gqm obtained from the experiments and gcl of the
classical theory [9].

For intermediate k . g
21
cl , the semiclassical prediction

of Eq. (2) fails because of the presence of the periodic or-
bits, which leads to nonuniversal behavior. Nonuniversal
contributions can play in general a crucial role in deter-
mining the overall structure of the spectral autocorrelation,
since they can be of the same order of the universal result
of RMT. Here we show that the complete C�k� for all k

can be described in terms of classical resonances.
Recently, Agam [20] derived a semiclassical theory to

build the connection between the nonuniversality of the
spectral autocorrelation and the classical RP resonances.
Consider the quantum mechanical propagator [21]

K��r1, �r2, t� �
1

2p h̄i

Z
G��r1, �r2,

q
2m´�h̄2 �e2i´t� h̄ d´ ,

(3)

with ´ � h̄2k2�2m. The integration is performed around
´0 � h̄2k2

0�2m, with D´ � h̄yDk and y � h̄k0�m is the
group velocity of the classical particle. The integration
in the ´ space can be changed into that in the k space
as K��r1, �r2, t� � �y�2pi�e2i´0t� h̄

R
Dk G��r1, �r2, k0 1 k� 3

e2iykt dk. The particle density is r�t� � jK��r1, �r2, t�j2.
The autocorrelation of the particle density is Cr�t� �
�r�t�r�t 1 t��t 2 �r�2

t with �r�t 	 limt!`�1�T � 3RT
0 r�t� dt. Using the diagonal approximation, we get

Cr�t� � �Dky2�4p2V 2�
R

dk C�k�e2iykt . Here V is
the volume of the system with V ! ` for an open system.
If one assumes that the above correlation is classical, one
has [22,23] Cr�t� �

P`
i�1 2bie2giyt cosg0

iyt, where
the bi are the coupling coefficients, gi 6 ig0

i the RP
resonances of the corresponding classical system in wave
vector space. Taking the Fourier transform of the above
expression

R
dt Cr�t�eikyt , we get

C�k� �
X̀

6,i�1

b0
igi

g
2
i 1 �k 6 g

0
i�2

, (4)

with b0
i � 2pV 2bi�Dky3.

We now turn to the classical dynamics of the sys-
tem. The classical evolution is described by the Perron-
Frobenius operator whose spectrum, known as the RP
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resonances, can be calculated as the poles of the classical
Ruelle z -function. For the hard-disk system, the classical
Ruelle z -function is [24]

zb�s� �
Y
p

�1 2 exp�sLp��jLpjL
b21
p �21, (5)

here, Lp the length of the periodic orbit p, and Lp the
eigenvalue of the monodromy matrix associated with the
periodic orbits. Only the poles of zb�s� with b � 1 are
calculated since they contribute to the RP resonances with
the smallest real part gi . The escape rate gcl is the real
pole of z1�s�.

For the integrable two-disk system in the fundamental
domain, there is only one prime periodic orbit. We have
z

21
1 �s� � 1 2 t0, where t0 � exp�s�R 2 2a���L, and

L � �s 2 1� 1
p

s�s 2 2�, with the disk separation
ratio s 	 R�a. The classical scattering resonances
are gn 1 ig0

n � �lnL 6 i2np���R 2 2a�, with n �
1, 2, . . . . The classical escape rate is gcl � �lnL��
�R 2 2a�. For the chaotic n-disk system, there is no
analytical expression of the classical RP resonances.
Making use of the cycle expansion [25] and the symmetry
factorization of the classical Ruelle z -function, the RP
resonances can be calculated very accurately [24].

With the available analytical expression of the semiclas-
sical resonances for the two-disk system in the fundamen-
tal domain [26], kn 1 ik0
n � �2np 1 i�1�2� lnL���R 2

2a� with n � 1, 2, . . . , one can directly check the validity
of Eq. (4). Substituting the semiclassical resonances into
Eq. (1), one gets the full two-point correlation function as

C�k� ~
X̀

n�2`

bn

g2 1 �k 1 ng0�2 , (6)

where g � gcl , g0 � 2p��R 2 2a�. On the other
hand, since the RP resonances of the system are
�lnL 6 i2np���R 2 2a�, if one puts these resonances
into Eq. (4), the above expression (6) follows immediately.

The classical RP resonances can also be obtained ex-
perimentally by fitting the spectral autocorrelation with
Eq. (4). Since the transmission coefficient S21� f� and also
the couplings ci of the quantum resonances depend on the
location of the two probes, so do the couplings b0

i in Eq. (4)
of the classical RP resonances. The couplings b0

i are cho-
sen to optimize the fitting. Because of the finite range
of the experiment spectrum, only the first eight RP reso-
nances with small real part were obtained. The experi-
mental autocorrelation with the theoretical prediction are
shown as Fig. 2. The agreement between the experimen-
tal RP resonances and the theoretical ones for the two-disk
system is 6% for the position g

0
i and better than 30% for

the widths gi , it is 7% for g
0
i and 11% for gi for the

three-disk system, and it is 8% for g
0
i and 17% for gi for
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FIG. 2. Autocorrelation function C�k� vs k (cm21) of the n-disk system in the fundamental domain. (left) Two-disk system with
R � 40 cm. (center) Three-disk system with R�a � 4

p
3. (right) Four-disk system with R�a � 4

p
2. In all cases the disk radius

a � 5 cm. (top panels) Gray line: experimental autocorrelation; solid line: numerical fit to Eq. (4). The insets show the leading
periodic orbits (solid lines) for the different geometries. (bottom panels) The dashed lines are the decomposition of the experimental
C�k� into Lorentzians. The filled squares are the position g

0
i and the bars the widths gi of the experimental RP resonances obtained

from the decomposition. The open circles with dotted bars are the positions g
0
i and width gi of the predicted Ruelle-Pollicott

resonances calculated from Eq. (5).
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the four-disk system. We note that these agreements, in
particular the wave-vector position g

0
i , should be consid-

ered as very good. The principal sources for the residual
discrepancies are the nonideality of the absorbers, small
symmetry-breaking perturbations, and the suppression of
some resonances at the neighborhood where the antennas
are coupled which affects the autocorrelation function, and
therefore the position and the widths of RP resonances.
Also very broad resonances are difficult to identify and can
lead to an apparent enhancement of the observed widths,
which can possibly account for the systematically smaller
widths that are observed.

Our investigation clearly demonstrates that the entire
quantum spectral autocorrelation for k . g

21
cl can be

understood completely in terms of the classical RP
resonances. The meaning of these RP resonances in the
classical context can be understood as follows. If one
shoots particles toward the hard disk scatterer, the number
of particles that will remain in the scattering region will
decay as N�t� �

P
i aie2ai t . Besides the general expo-

nential decay at a0 � ygcl , there are oscillations due to
the fact that the RP resonances ai � y�gi 6 ig0

i� are not
always real [24] as contrasted with the purely diffusive
system. Taking the Fourier transform of N�t�, one can
identify the Lorentzians in the spectrum with the RP
resonances. Our work demonstrates that suitable quantum
correlations diffuse just like classical observables in an
open system.

It is remarkable that the same experiment yields both
the quantum resonances and the classical RP resonances.
Thus we have demonstrated experimentally the profound
connection between quantum properties and classical dif-
fusion. This connection is best seen in open quantum sys-
tems. We have demonstrated this connection for the model
n-disk geometry by combining our experiments with a vast
body of theoretical results for the quantum and classical
properties that is available for this system. However, we
believe the results of this work should apply to arbitrary
open chaotic systems. The present results also have wider
implications in a variety of phenomena in different fields
in physics, such as photodissociation of atoms [27], nu-
clear decay [28], electronic transport, fluid dynamics, and
acoustic and electromagnetic propagation.
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