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Oscillations Due to Two-Electron Exchange during He-Ne Collisions
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Ne™ (15%25*2p33s2) and He (152s2) autodetachment peaks in electron spectra arising from He-Ne
collisions at energies ranging from 350 eV to 6 keV have been measured. The areas of these two peaks
are found to oscillate approximately in antiphase, with a constant wavelength, on a (velocity) ™! scale. It
is shown that this behavior can be explained by the “quasiresonance” situation for the separating particles
in the channels Ne™-He* and He™-Ne™. This explanation implies that the oscillations can be understood
as being due to the simultaneous “hopping” of two electrons.

PACS numbers: 34.10.+x, 34.50.Fa, 34.70.+¢

If a particle is bound by two neighboring identical po-
tential wells with a finite barrier in between, its eigen-
functions are “gerade” or “ungerade” superpositions of the
wave functions describing its state on the different sites.
The ammonia molecule is a well known “textbook” re-
alization of this situation for the case of an atom [1(a)].
Formation of the molecule at a well defined time point
with the N atom on one of the sites leads to a periodic
change of the population of the two sites with the well
known inversion frequency of ammonia. For the case of a
single electron an equivalent situation arises during sym-
metrical ion-atom collisions, with the only difference that
the “hopping frequency” of the electron changes as the
potential barrier between the atoms changes during the
collision. Depending on the relation between hopping fre-
quency and collision time, a certain number of “hops” can
occur. In this sense, maxima in oscillatory capture cross
sections may be ascribed to, respectively, 1, 3, 5, etc. hops
during the collision. A well known example is the oscilla-
tions in the differential capture cross section for H* + H
collisions at keV collision energies [1(b)]. Recent studies
have shown that the concept of one-electron hopping may
be used more generally: Oscillations in total cross sec-
tions for quasiresonant charge exchange between ions and
Rydberg atoms [2], as well as for inelastic He?* + H col-
lisions [3,4] could be explained in this way.

For hopping oscillations to become visible in total
cross sections, the range of impact parameters relevant
for the observed process needs to be sufficiently narrow
to define sufficiently accurately the number of hops.
Rosenthal and Foley [5] found that, for inelastic col-
lisions, this condition is fulfilled if excitation occurs
at small impact parameters into two molecular states
which couple again at large distances. An example is
oscillations in the total cross section for Ne*(3p) and
Na*(3p) formations observed in Na™ + Ne collisions
[6]. In this case, excitation of a strongly bound 2p-
electron requires a small impact parameter, while the in-
teraction of the observed channels, [Ne*(3p) + Na*] and
[Na*(3p)-Ne™], respectively, is strong at large distances,
because of an asymptotic quasiresonance and because
of the fact that the involved 3p orbital is rather large.
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The observed oscillations of the populations of the two
quasiresonant channels are found to be in antiphase and to
have a constant frequency on a (v.)~! scale (v.: collision
velocity).

The standard two-state quantum mechanical descrip-
tion of the “two site” situation outlined above [1(c)]
is not explicitly restricted to one-particle states. In
principle, therefore, (quasi)resonant two-electron charge
exchange might be possible. If it occurs, it would be
observable as oscillations interpretable in terms of
“simultaneous two-electron hopping.” We report here
such oscillations for the first time. They arise in the
total cross section for formation of the negative ions
Ne**~(2p33s?) and He™ (1s2s%) in collisions of He
with Ne. The two excited channels (Ne ** + He™) and
(He ™ + Ne™) are asymptotically quasiresonant, with
energies of (40.795 eV) and (40.930 eV) [7]. Both chan-
nels are observed in our experiment, and the population
of the two channels is found to oscillate in antiphase and
with a constant frequency on a (v.)~! scale.

The negative ions decay by autodetachment yielding
electron peaks at 16.2 eV and 19.3 eV for Ne™ and He™,
respectively. We measure the area under these peaks as a
signal proportional to the formation probability of the ions.
Since the peaks are superimposed on a continuous electron
spectrum [8], the area can be obtained without systematic
uncertainties.

The measurements are carried out under single collision
conditions in a magnetically shielded tank at high vacuum,
in an energy range from 350 eV to 6 keV. The experimen-
tal procedure followed is rather standard. Briefly, He* ions
are produced in a hollow cathode ion source, accelerated to
the desired energy, mass selected by 60° magnetic deflec-
tion, and finally partially neutralized by resonant charge
transfer. After passing an electric field region in which
the remaining ions are removed, the beam of neutral He
atoms is collimated by a diaphragm down to an angle of
divergence of 0.2° and crossed with an effusive thermal
Ne beam, which is also collimated and has a density low
enough to guarantee single collision conditions. Because
of the low divergence angle of 0.2°, a possible metastable
state component in the neutral He beam is negligible.
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Electrons formed in the collision volume are detected in a
direction perpendicular to the He beam by a hemispherical
electrostatic analyzer. The analyzer utilizes microchannel
plates with position sensitive detection at the exit, allowing
one to analyze simultaneously an energy band of a width
of 20% of the transmitted energy at a resolution of 3%.
This energy band contains the two negative ion peaks. At
each collision energy the area under the peaks is normal-
ized by the He-beam intensity and by the target density. In
Fig. 1 we show a plot of this intensity on the (v.) ! scale.

We observe clear oscillations of the intensity with the
collision energy. These oscillations are approximately in
antiphase for the two negative ions, and, in part of the en-
ergy region, 100% modulated. Further, the “wavelength”
of the oscillations is approximately constant on the (v.) ™!
scale. As outlined in the introduction, this strongly sug-
gests the simultaneous exchange of two electrons whose
sum of the binding energies on the two different ions,
He* and Ne™, is accidentally almost equal. The oscil-
latory dashed curves also shown in Fig. 1 are calculated
intensities obtained from a theoretical model based on the
assumption of such a “quasiresonance.”

In the model we consider only the two channels asymp-
totically connected to the observed negative ion states. Ac-
cording to the electron promotion mechanism [9,10], these
two channels are populated “on the way out” at rather large
distances, but in a narrow distance region, where the chan-
nels belonging to double excitation of Ne**(...2p*3131’)
couple to the considered ion pair states. This coupling can
occur either directly or indirectly via channels belonging
to simultaneous single excitation of both collision partners.

collision energy (keV)
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FIG. 1. Plot of the areas of the He™~ peak and the Ne™*~ peak

(linear scale) vs the reciprocal relative collision velocity. The
dashed oscillatory curves are calculated (see text). The statistical
error is smaller than the point markers. The estimated possible
systematic error stemming from beam calibration is indicated by
error bars.
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The initial population distance is a parameter in the model.
What is actually calculated are the final asymptotic popula-
tion probabilities for the observed channels that result from
certain initial population amplitudes on the way out. To
carry out this calculation, we use the potential curves given
in Fig. 2. The diagram shows a pair of adiabatic molecular
potentials that separate with decreasing distance due to an
increasing electronic coupling strength, and the pair of cor-
responding diabatic states which arise when the electronic
coupling is omitted. The diabatic energies €; and &;, and
the corresponding electronic wave functions, we assume
to be independent of the distance (R). For a two-state sys-
tem modeled in this way, the desired expressions can be
derived without knowledge of the wave functions, using
standard quantum mechanics [see, e.g., [1(c)]]. By trans-
forming the R dependence of the electronic system into a
time dependence via the introduction of a radial collision
velocity dR/dt, we derive the following set of differential
equations for the probability amplitudes (a; ») of the adia-
batic states:

da\/dt = —ap; X f1 X exp{(i/ﬁ)ﬁ(E] - Ez)dt},

day/dt = —a; X fr X exp{—(i/ﬁ)ﬁ(El - Ez)dt}.

Here the adiabatic energies are given by Ej» = *[W? +
(A/2)2]'/2, with A = &, — &,. (W) is the electronic cou-
pling matrix element, and the factors f, are given by
f1 = (dd,/dt) X {sin(61)cos(82) — cos(8)sin(6)},
f2 = (d&,/dt) X {sin(5,)cos(d1) — cos(>)sin(d1)}.

In these relations, we have introduced so called “mixing
angles” defined as
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FIG. 2. The potential curve diagram representing the two-state
model used to analyze the oscillations. The adiabatic energies
E;  are calculated using the coupling matrix element determined
by fitting the experimental data.
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61 = arctan{W/(E; — &1)}, and
8, = arctan{W /(E, — &)}.

If the functional form of the coupling matrix element
W(R) is known, the derivatives of the mixing angles
(d81,/dt) become simple analytic expressions that can
be obtained from their definition given above, and the
coupled differential equations allow one to calculate nu-
merically the population probabilities |a;»(t = %)|* from
the initial population amplitudes at time point a; (¢ = 7)
for a given radial velocity vyaq = ve[l — (b/R)*]"/? (v,:
asymptotic collision velocity; b: impact parameter).

For the case of one-electron exchange, the coupling
matrix element has been found to be given in good ap-
proximation by the function [11]

W(R) = A X R X exp(—BR),

with the constants A and 8 being determined by the asymp-
totic binding energies of the one electron involved. We use
the same general form of the coupling matrix element. In
order to adapt it to the present case, where two electrons
are exchanged, we replace the one-electron binding energy
by the sum of the binding energies of the two electrons in-
volved, E, = E ll, + E,%, and introduce a factor of 2 in the
preexponential factor because of the exchange degeneracy
of the final state of the two-electron capture process. The
resulting function is

W(R) = a® X R X exp{—0.86aR},
with a = [2E,]"2.

The factor (0.86) appears also in the original expression of
Olson et al. [11] and is a result of the fit of the general
function to experimental data available on one-electron
exchange systems.

The final population probabilities are dependent only on
the integral over W(R), which depends (i) on the starting
distance [R(7)] and (ii) on the function itself. Since the
function itself is expected to be different for two-electron
exchange, we choose an estimated fixed initial population
distance of R(7) = 6 a.u. (atomic units) and allow the con-
stant k = (.86 to take on a different value.

The actual numerical calculations are carried out by
solving the differential equations in R space for a given
impact parameter, and integrating over impact parameters
from zero up to a certain by,. As outlined above, except
for the ratio of the initial population amplitudes [a; ()],
the only free parameter that can be adapted is the factor
(k) appearing in the exponent of the coupling matrix ele-
ment. In principle, there could be a relative phase between
the initial population amplitudes; however, it turns out that
such an initial relative phase does not influence the final
probabilities |a; »()|?. We therefore choose the initial am-
plitudes to be real. A clue as to the ratio of their real values
is the fact that the modulation of the measured oscillations
is 100% in the main region of collision energies. Such a

100% modulation of the final probabilities can be obtained
in the calculations only if [a;(7)]? = [a2(7)]* = (1/2).
We therefore use these initial conditions in the calcula-
tions. Based on the promotion mechanism [9,10], which
requires overlap of the He(ls) orbital with the Ne(2p)
orbitals, we may assume that by,x < 2 a.u. The precise
value is uncritical up to a value of ca. 3 a.u. where the
calculated modulation of the probabilities starts to become
significantly less than 100% in the subtended velocity re-
gion. We use bp,x = 2 as the limit for the integration
over impact parameters. The best agreement with the ex-
periment is obtained for the value k = 0.62. The coupling
matrix element describing double electron exchange thus
becomes, with a = 0.63,

W(R) = 0.25 X R X exp(—0.39 X R) (a.u.).

This is actually the matrix element used to construct
the adiabatic energy lines in Fig. 2. For the agreement
achieved, the precise value of the estimated integration
limit R(7) is unimportant, because the final population
probabilities depend only on the integral over W(R): A
different R(7) would result in a different value of (k).
Within our interpretation, the experimental curves in
Fig. 1 result from a common excitation cross section
curve multiplied by the oscillating probabilities. We see
immediately that this is an idealization, but we show
later that the data are consistent with this interpretation.
To facilitate a first direct comparison of calculated and
measured oscillations, we plot in Fig. 1 the calculated
probabilities multiplied by a smooth function to simulate
a common cross section. We notice that the oscillations
are rather well reproduced. This is already strong evi-
dence for the validity of the model and, hence, for the
two-electron hopping hypothesis. While distortions of
the observed oscillations can have several reasons not
relevant in the present context, their exact antiphase
character is important. Here the data as presented in
Fig. 1 seemingly do not qualify with sufficient accuracy.
However, if we tentatively “reconstruct” the experimental
relative population probabilities, which we obtain from
the curves of Fig. 1 by first “correcting” the He curve
and then dividing each curve by the sum of the curves,
we find that the data are indeed consistent with exact
antiphase behavior. This is shown in Fig. 3, where also
the calculated probabilities are given. The “correction
function” we used for the He curve increases rather steeply
towards low (v.)”! and has the form C/[(v.)”' — D],
with (C = 20 and D = 3.5). It is chosen to compensate
for possible extra loss from the observed He channel,
which is suggested by the experimental data. There is
no special reason for the functional form chosen, except
that, by multiplying the He signal with this function, the
overall velocity dependence of the resulting He signal
resembles the one of the Ne signal. By calculating the
probabilities using this corrected He signal, we obtain the
curves shown in Fig. 3. The important antiphase criterion
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FIG. 3. Comparison of population probabilities extracted from

the experimental data of Fig. 1, with the probabilities following
from the theoretical model.

is now fulfilled and the quality of agreement between
calculations and experiment has considerably been
improved. This shows that the experimental data are
consistent with the physical interpretation on which the
calculations are based.

The theoretical description allows one to follow the
probabilities for population of the diabatic states during a
collision, i.e., of the states (Ne**~-He ') and (He**~-Ne ™),
which transform into each other by the transition of two
electrons. As an example we show in Fig. 4 these proba-
bilities for a collision velocity of 0.14 a.u., where the Ne™
signal has approximately its maximum. We notice that
the two electrons change places several times during the
collision. With decreasing velocity the number of hops
increases. At the lower velocities the oscillations in the
experimental curves probably disappear because the large
number of hops is not sufficiently well defined.

In summary we reported the observation of oscillations
in the total cross section for the formation of Ne™ and He™
in keV He + Ne collisions. A two-state model description
based on the assumption that the oscillations are due to the
“quasiresonance” situation for the channels He~ + Ne™
and Ne~ + He™ is found to describe the oscillations sat-
isfactorily. This description implies the coupling due to
two-electron exchange, which, in a diabatic picture, may
be ascribed to simultaneous two-electron hopping between
the collision partners during the collision. To our knowl-
edge this is the first demonstration of the phenomenon.
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FIG. 4. The population probabilities for the adiabatic and dia-
batic states as a function of distance at a fixed collision velocity
of 0.14 a.u. 100% population of one of the diabatic states im-
plies that both electrons are attached to one of the collision part-
ners. The oscillations of the diabatic state populations therefore
imply “hopping” of two electrons.
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