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Conformational Diffusion and Helix Formation Kinetics
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The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide
models in explicit solvent are described quantitatively by a diffusive search within the coil state with
barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics
and jump-width dependences in temperature jump experiments.

PACS numbers: 87.15.Cc, 87.10.+e¢

Fast, time-resolved spectroscopy probing the earliest,
submicrosecond events in protein folding [1-4] showed
that a-helix formation occurs on a nanosecond time scale
[5,6], considerably faster than B-turn formation [7], loop
closure [8], or the overall folding of proteins [1,2,9]. Helix
formation kinetics is thus getting within reach of molecu-
lar simulations [10,11]. The energy landscapes of small
peptides [12] are greatly simplified compared to those of
proteins [13—19]. Nevertheless, even for peptides of only
a few amino acids, the search for a “folded structure” in
a high-dimensional conformation space is far from trivial.
Small helical peptides can thus provide us with a revealing
view of the molecular processes underlying protein folding
at greatly reduced computational cost.

The “coil-to-helix” transition [20—22] is the simplest
element of protein secondary structure formation and fold-
ing. We quantify helix formation kinetics within a confor-
mational diffusion model, based on extensive molecular
dynamics (MD) simulations of all-atom peptide models in
explicit solvent. The helix formation kinetics is tied to
thermodynamic driving forces: free energies, enthalpies,
and entropies. This analysis reveals surprising similarities
to the more complex folding of proteins.

Two blocked alanine (Ala) and glycine (Gly) based
pentapeptides are studied. Both Ac-Alas-NHMe (As) and
Ac-Ala;-Gly-Ala,-NHMe (A;GAj) can form 1.5 turns
of a helix stabilized by three (i,i + 4) backbone hydro-
gen bonds. These two peptides were each simulated at
temperatures 7 ranging from 250 to 400 K in explicit
solvent of ca. 500 water molecules for about 10 ns per
run. Simulation details can be found in Ref. [23]. From a
principal-component analysis [24] of configuration space,
we identify a helical reference structure with backbone di-
hedral angles (¢, ) = (—57.4,—45.3), (—64.0,—40.9),
(—63.9,—41.9), (—63.4,—37.8), and (—70.9, —23.8) in
units of degrees. Peptides with mean-square-distance
(MSD) [25] of less than 0.36 A? from that structure are
classified as helical, corresponding to the free energy mini-
mum along the MSD reaction coordinate (Fig. 1). Struc-
tures with MSD > 0.36 A2 belong to the coil ensemble.
With these definitions, equilibrium MD trajectories are
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analyzed to extract thermodynamic and kinetic parame-
ters of the interconversion between helical and coil states.

Folding is driven by thermodynamics, and we expect
that the kinetics of the helix-to-coil transition is tied to
thermodynamic functions. Figure 1 shows the free en-
ergy profiles for the As and A,GA, peptides along the
MSD reaction coordinate. For As, we find a minimum
corresponding to the helical state with MSD < 0.36 AZ2.
Separated by a small barrier (<kgT), a second minimum
develops at higher temperatures corresponding to the coil
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FIG. 1. (a) Free energy along the MSD reaction coordinate
for As (top curves) and A,GA; (bottom curves). The lines
are obtained from the MD trajectories. The symbols are a fit
to a Gibbs free energy AG = AH — TAS with T-independent
enthalpies and entropies. (b) Enthalpies AH and entropies AS
along the MSD reaction coordinate for As (top curves) and
A,GA,; (bottom curves). Lines are guides to the eye. Note that
AG, AH, and AS contain arbitrary constants. No correction was
made for the “Jacobian” in MSD space, such that AG — = as
MSD — 0 (i.e., observing the exact reference structure has zero
probability).

© 2000 The American Physical Society 2637



VOLUME 85, NUMBER 12

PHYSICAL REVIEW LETTERS

18 SEPTEMBER 2000

state. For A;GA,, the free energy profile in the coil re-
gion is more structured, reflecting the presence of distinct
structure classes within the coil ensemble. In particular,
the minimum between MSDs of 3 and 6 A2 corresponds
to turnlike structures [23] that are stereochemically fea-
sible because of the flexibility added by the Gly residue
at the center of the peptide. As temperature increases,
the free energies of the coil ensemble become more fa-
vorable relative to the helical state. At any given MSD,
we find that the Gibbs free energy AG(MSD) can be rep-
resented by a sum of T-independent enthalpies, AH, and
entropies, AS: AG(MSD) = AH(MSD) — TAS(MSD).
The agreement of this simple thermodynamic decomposi-
tion with the actual data is illustrated in Fig. 1. Note that
AS = —9AG/9T is the thermodynamic entropy incorpo-
rating both peptide and water contributions.

As shown in Fig. 1, at MSD > 0.36 A% both AH and
AS of As decrease approximately linearly as the helical
state is approached. Below MSDs of about 0.36 A? this
decrease accelerates, reflecting enthalpy gains from back-
bone hydrogen bonds that are traded off by entropy losses
from a reduction in the number of possible peptide con-
formations. For A;GA; compared to As, both entropy
and enthalpy of helix formation have smaller slopes with
respect to MSD. The minima in AH and AS near an
MSD of 4.5 A? reflect the enthalpic competition between
hydrogen-bonded turnlike structures and the « helix.

Figure 2 shows the first passage time (FPT) distributions
for helix formation and helix-to-coil transitions calculated
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FIG. 2. FPT distributions for helix-to-coil transitions (top) and
helix formation (bottom) for peptides As and A;GA, (scaled by
ten). The inset in the top panel shows the MFPT as a function
of T~! for helix formation (circles, dashed lines) and helix-to-
coil transitions (squares, solid lines) of As (filled symbols) and
A,GA; (open symbols). Lines are fitted to an Arrhenius form,
MFPT ~ exp(AH?*/kgT).
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from equilibrium MD trajectories. FPTs are defined as
the time to reach the dividing surface (MSD = 0.36 A?)
between helix and coil states from an equilibrium dis-
tribution in the helix and coil ensembles, respectively.
Also shown are the mean first passage times (MFPT) for
helix formation and helix-to-coil transitions as a function
of T~!. We find that the helix-to-coil transition MFPTs
of both peptides follow an Arrhenius 7 dependence,
MFPT ~ exp(AH*/kgT), with similar apparent acti-
vation enthalpies of AH* =139 = 1 kimol™! (As)
and 10.9 = 2 kImol~! (A,GA,). FPT distributions for
helix-to-coil transitions are exponential. MFPTs for helix
formation are 7 independent between 250 and 400 K
for As, and follow an Arrhenius law for AsGAs. FPTs
for helix formation are strongly nonexponential, with a
power-law decay dominating the initial times.

These thermodynamic and kinetic results indicate that
helix unfolding is a thermally activated process. On the
other hand, the 7 independence of the MFPTs for helix
formation together with the nonexponential FPT distribu-
tions suggest that helix formation of As is dominated by
conformational diffusion in the coil ensemble with barrier-
less transitions into the helical state. A diffusive search
explains naturally the nonexponential distribution of FPTs
[26]:  Significantly populated coil conformations close
to the helical state lead to an initial nonexponential re-
laxation, while the long-time behavior is dominated by
the slow relaxation of coil conformations distant from the
helical state. In addition, the T-independent MFPTs for
As helix formation follow from a compensation between
temperature-induced increases in the configuration-space
diffusivity and the extent of populated coil configuration
space. At elevated temperatures, this results in accelerated
diffusion over larger average distances.

To quantify this conformational-diffusion model of he-
lix formation kinetics, we numerically solve [27] Smolu-
chowski’s equation for one-dimensional diffusion [13,28],
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where B! = kgT. Implicit is the assumption that the
reaction coordinate x changes continuously and in small
steps, as helix formation progresses. For x we empirically
choose the MSD from the helical reference structure. The
corresponding temperature-dependent free energy surfaces
AG(x = MSD) are obtained from counting statistics of
MD trajectories (see Fig. 1). D is the diffusion coefficient,
assumed to be position independent. We use a strongly
absorbing sink term k(x) = 10° ps~! forx < 0.36 A2 and
zero otherwise. p(x,t) is the probability distribution of
x at time f. An equilibrium distribution, p(x,t = 0) «
exp[— BAG(x)], in the coil region x = 0.36 A2 is used
as the r = 0 initial distribution, with the helical region
x < 0.36 A% masked out.

For comparison, we calculate survival probabilities S()
of the coil state from the MD trajectories and the diffusion
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model. S(t) = [, p(x,1)dx is the probability that the
peptide is in a coil state at all times between 0 and ¢,
given that it was in a coil state at time 0. S(z) is related to
the FPT distribution p(¢) through S(¢) = [, p(¢') dt'. The
position-independent diffusion coefficients D are adjusted
to reproduce the MFPT for helix formation at all tempera-
tures except at 300 K, where D was estimated through
matching of S(¢) over the first 200 ps.

Figure 3 compares the survival probabilities S(¢) for
As in the coil state calculated from MD simulations and
Smoluchowski theory. We find good agreement between
the diffusive-search model and the simulation data at all
temperatures. After an initial nonexponential relaxation
extending to between 50 and 100 ps, the S(¢) curves ex-
hibit an approximately exponential decay. The inset in
Fig. 3 shows the T dependence of the estimated diffu-
sion coefficient D. With the exception of the least exten-
sively sampled T = 250 K state with sluggish relaxation
kinetics reflecting the supercooled solvent conditions, D
exhibits Arrhenius behavior, D ~ exp(—AH /kgT) with
AH = 13.8 kJmol~!. Also shown is an estimate of the
diffusion coefficient for a harmonic model [27,28], Dy =
var(MSD)/ 7o, based on the ratio of the variance and the
correlation time 7o of the MSD, both calculated over the
whole trajectory. 7o is estimated by integrating the auto-
correlation function of the MSD from time zero to the first
crossing of the zero axis. We find good agreement between
the two diffusion coefficients, with D = Dg at 400 K and
Dy smaller by about a factor of 2 at 250 K. Thus, one-
dimensional diffusion along the MSD reaction coordinate
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FIG. 3. Survival probability S(¢) in the coil state as a function
of time. The simulation data are shown as symbols, with errors
estimated from block averages for times ¢ with five or more
helix formation events contributing to S(z). Calculations based
on Smoluchowski’s equation for a MSD reaction coordinate are
shown as lines. The S(¢) curves for different temperatures are
shifted vertically. The inset shows the diffusion coefficient D
(filled circles) as a function of 7~'. The line in the inset is a
fit to an Arrhenius law, D ~ exp(—AH /kgT). Open squares
correspond to estimates of D from the variance of the MSD and
the MSD-correlation time [27,28], Dy = var(MSD)/7corr.

quantitatively reproduces the helix formation kinetics of
As with diffusion coefficients as expected from equilib-
rium relaxation dynamics.

The diffusive helix formation model presented here can
be tested experimentally. We find that the helix formation
kinetics is nonexponential at short times (less than 10 to
100 ps). While this is below the time resolution of the re-
ported experimental helix-coil transition studies, it should
be within reach of current experimental technology, and
would offer a means of directly comparing molecular simu-
lations to experiments in the time domain. Recent ex-
periments showed nonexponential relaxation kinetics for
the T-jump induced re-folding of cold denatured proteins
[9], interpreted similarly in terms of “downhill folding”
[14,29]. Nonexponential helix-coil relaxation kinetics and
weakly T-dependent folding rates were also observed for a
synthetic homopolymer forming a helix stabilized by -7
stacking interactions [30]. Here, we accurately reproduce
the helix formation kinetics by a diffusive search in the
coil state, leading to nonexponential relaxation at the short-
est times that turns into exponential relaxation at longer
times.

Another experimentally testable prediction of a diffusive
folding model is that in 7-jump experiments [5,6], the re-
laxation will depend on the magnitude of the T jump. For
conformational diffusion, the relaxation depends on the
initial distribution in conformation space which is deter-
mined by the temperature before the T jump. Jump-width
dependence together with nonexponential relaxation was
indeed observed for the folding kinetics of cold shock pro-
tein A [31].

Moreover, the power-law decay of helix-formation times
suggests that repeated single-molecule experiments [32]
will lead to a wide distribution of folding times. This in
turn directly affects the kinetic interpretation of folding
simulations based on a small number of successful fold-
ing events [33,34]. On the other hand, repeated helix-to-
coil transition simulations [35—37] will produce a rapidly
decaying exponential distribution of unfolding times that
cannot easily be inverted into folding times using two-state
kinetics.

An analysis of the sequence dependence of helix forma-
tion reveals surprising similarities to protein folding mod-
els. Within the energy-landscape description of protein
folding, the all-Ala peptide can be classified as a “fast-
folding” peptide, where the helix formation kinetics is
determined by downhill diffusion in conformation space
without a significant free energy barrier to the helical state
[14,29]. Substituting the central Ala by Gly introduces
enthalpically stabilized “traps” into the coil state. Helix
formation in A»GA; thus requires a combination of acti-
vated escape from these enthalpically trapped conforma-
tions and subsequent conformational diffusion. This is in
agreement with a theoretical study by Hardin et al. [29]
who find, based on an effective energy function, that small
helical proteins should fold without a barrier. Only as the
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roughness of the energy landscape is increased, activated
T dependence emerges.

It is remarkable that the “folding” kinetics of a small
peptide into an « helix can be reproduced quantitatively
by diffusion along a one-dimensional reaction coordinate,
with T-dependent diffusion coefficients in agreement with
those estimated from equilibrium fluctuations. For larger
peptides and proteins, the identification of suitable reac-
tion coordinates will be considerably more difficult, though
at least in the case of lattice models of protein folding,
diffusive models with carefully chosen reaction coordi-
nates were shown to give accurate descriptions of the ki-
netics [28]. Thus, while the projection of conformation
space onto a one-dimensional coordinate is an approxi-
mation with obvious limitations, it leads to a surprisingly
simple and quantitative description of complex kinetics
that makes the connection of folding to the thermody-
namic driving forces—entropies, enthalpies, and free en-
ergies—transparent.
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