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Entanglement of Formation for Isotropic States
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We give an explicit expression for the entanglement of formation for isotropic density matrices in
arbitrary dimensions in terms of the convex hull of a simple function. For two qutrit isotropic states
we determine the convex hull and we have strong evidence for its exact form for arbitrary dimension.
Unlike for two qubits, the entanglement of formation for two qutrits or more is found to be a nonanalytic
function of the maximally entangled fraction in the regime where the density matrix is entangled.

PACS numbers: 03.67.Hk, 03.65.Bz, 89.70.+c
One of the main goals in quantum information theory
is to develop a theory of entanglement. A cornerstone of
this theory will be a good measure of bipartite entangle-
ment. Such a measure must obey the essential property
that the entanglement of a bipartite density matrix r which
is shared by Alice and Bob cannot increase, on average,
under local quantum operations and classical communica-
tion (LO 1 CC) between Alice and Bob. In this way, the
entanglement captures the truly quantum correlations in a
bipartite density matrix. For pure bipartite states a good
measure of entanglement has been found, it is the follow-
ing quantity:

E�jc� �cj� � S���TrB�jc� �cj���� , (1)

where S� r� is the von Neumann entropy of r; i.e., S� r� �
2Trr logr and TrB�jc� �cj� is the reduced density matrix
that we obtain by tracing out over Bob’s quantum system.
This measure E is unique [1,2] if one requires the entangle-
ment to obey a set of natural properties such as convexity,
nonincrease under local measurements, asymptotic conti-
nuity, partial additivity, and normalization. Moreover, E
is a measure of the asymptotic entanglement costs [3] of
making the state jc� out of a canonical set of states, which
we can choose to be EPR singlets 1

p
2
�j01� 2 j10��, which

have E � 1. This process is reversible, in the sense that
one can concentrate [3] a set of n states jc� with entangle-
ment E to a smaller set of m � En EPR singlets.

The situation for mixed states is much more complex. In
Ref. [4] a first measure of mixed state entanglement, called
the entanglement of formation, was introduced. This mea-
sure is a candidate for measuring the asymptotic costs of
making the density matrix out of a supply of EPR singlets.
There are no mixed density matrices for which this state-
ment has been proved, but neither have counterexamples
been found so far. The search for a possible discrepancy
between the entanglement of formation and the asymp-
totic entanglement costs is hampered by the fact that we
know the entanglement of formation only for two qubit
systems; Wootters [5] found an analytic expression for
the entanglement of formation for all two qubit density
matrices.
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In this Letter we present the first calculation of the en-
tanglement of formation of a class of density matrices in
dimensions higher than C2 ≠ C2. We explicitly determine
the entanglement of formation for two qutrit density ma-
trices in this class, and we find an expression in arbitrary
dimension in terms of the convex hull of a simple function.
We conjecture the explicit form of this convex hull, which
can be easily verified in a given dimension. Surprisingly,
the entanglement of formation is found to be a nonanalytic
function of the parameter characterizing the class of states
that we consider.

Let us start by recalling the definition of the entangle-
ment of formation. Let Er � � pi , jci�� be an ensemble
of pure states which form a decomposition of r �P

i pijci� �cij. The entanglement of formation for mixed
states r is defined as

E� r� � min
E��pi ,jci��

X
i

piE�jci� �cij� . (2)

In this Letter we will consider the class of density ma-
trices, sometimes called isotropic density matrices, which
are convex mixtures of a maximally entangled state and
the maximally mixed state:

rF �
1 2 F
d2 2 1

�1 2 jC1� �C1j� 1 FjC1� �C1j , (3)

for 0 # F # 1 and jC1� �
1
p

d

Pd
i�1 jii�. For F # 1�d

these density matrices are separable [6]. The entanglement
of formation for states with d � 2 is equal to [4]

H2� m�, m �
1
2

1

q
F�1 2 F� , (4)

where H2�.� is the binary entropy function. The states rF

have the important property [6] that they are invariant
under the operation U ≠ U� for any unitary transforma-
tion U. The LO 1 CC “twirling” superoperator SU≠U�

is
defined as

SU≠U�

� r� �
1

Vol�U�

Z
dU U ≠ U� rUy ≠ U�y. (5)

In Ref. [7] the Schmidt number of the isotropic states
was determined. Instead of making an isotropic state
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out of a set of maximally entangled states, we ask how to
construct an isotropic state with a given F out of some
state characterized by a Schmidt vector �m. So, let us
2626
take an arbitrary initial pure state jc� �
Pd

i�1
p

mi jai , bi�
and consider the effect of twirling. We can write
jc� � UA ≠ UB

P
i
p

mi ji, i� and thus
SU≠U�

√X
i,j

p
mimj jai , bi� �aj , bjj

!
� SU≠U�

√
�1 ≠ V �

X
i,j

p
mimj ji, i� � j, jj �1 ≠ Vy�

!
, (6)
where V � UT
A UB. We define yij � �ijV j j�. The twirled

state becomes

SU≠U�

�jc� �cj� �
j
P

i nij
2

d
P1

1
1 2 j

P
i nij

2�d
d2 2 1

�1 2 P1� , (7)

where ni �
p

miyii and P1 � jC1� �C1j. When we
choose V � 1 we find the density matrix rF at F �
�
P

i
p

mi 	2�d. For general V one can boundÉ X
i

ni

É2
#

"X
i

jnij

#2

#

"X
i

p
mi

#2

, (8)

since jyiij # 1 for all i. Thus the largest value for F is
obtained by choosing the initial state

Pd
i�1

p
mi jii�.

The use of symmetry makes it possible to give a sim-
plified expression for the entanglement of formation for
isotropic states:

Lemma 1.—The entanglement of formation for
isotropic states in Cd ≠ Cd (d $ 2) for F [ �1�d, 1	 is
given by

E� rF� � co���R�F���� , (9)

where co�g� denotes the convex hull of the function g and
R�F� is defined as

R�F� � min
�m

(
H� �m�jF �

"
dX

i�1

p
mi

#2 ,
d

)
, (10)

and �m is a Schmidt vector.
Proof.—Assume that there exists an optimal decom-

position of rF formed by the ensemble � pi , jci� �mi���,
where �m i denotes the Schmidt vector of the state jci�. By
twirling the left-hand side and right-hand side of the equa-
tion rF �

P
pijci� �cij we obtain that rF �

P
i pirFi �

r
P

i
piFi

where

Fi�Vi , �m i� �
j
P

k ykk

q
m

i
kj

2

d
, (11)

as in Eq. (7). Since the decomposition is optimal, each
Schmidt vector �m i has minimal entropy under this con-
straint. Consider the function

RV �F� � min
�m

(
H� �m�jF �

É
dX

i�1

yii
p

mi

É2,
d

)
. (12)

An optimal decomposition of rF is a convex combination
of pure states each of which corresponds to a certain F un-
der twirling. Thus the entanglement of formation E� rF�
can be obtained by taking the convex hull of the func-
tions co���RV �F����. We can make an additional simplifica-
tion. Equation (8) implies that RV �F� � R1�F0� 
 R�F0�
where F0 $ F for every V . Thus instead of taking the
convex hull of all functions co���RV �F����, we can take the
convex hull of the function R1�F� � minx�R�x�jx $ F�.
In Lemma 2 we will determine R�F� and it is not hard to
show that R�F� is a monotonically increasing function of
F. It follows then that R1�F� � R�F� and co���R1�F���� �
co���R�F����. �

We now determine the function R�F� defined in
Eq. (10). Since all the equations are symmetric in mi ,
we can restrict ourselves to solutions which satisfy
m1 $ m2 $ · · · $ md . With the method of Lagrange
multipliers we get a necessary condition for the minimum

21 2 logmi 1 L1 1
L2

2
m

21�2
i � 0 , (13)

where L1, L2 denote the Lagrange multipliers. For fixed
L1, L2 this determines the whole set � mi�. Setting mi �
1
q2

i
we obtain an expression of the form logqi � Aqi 1 B,

where A, B depend only on L1, L2. Since a convex and a
concave function cross each other in at most two points,
this equation has maximally two possible nonzero solu-
tions for qi . Therefore all Schmidt vectors �m that are
possible candidates for the minimum have to satisfy the
condition mi [ �g, d, 0�. Let n be the number of entries
where mi � g and m the number of entries where mi � d.
The minimization problem has been reduced considerably:
For fixed n, m, n 1 m # d, we minimize the function

nh�g� 1 mh�d� , (14)

where h�x� � 2x logx, under the constraints

�ng 1 md � 1, n
p

g 1 m
p

d �
p

dF � . (15)

The constraints give rise to a quadratic equation in
p

g

which provides two possible solutions for g for every
choice of n, m:

g6
nm�F� �

∑p
dFn 6

p
mn�m 1 n 2 dF�

n�n 1 m�

∏2

. (16)

With the first constraint we get the corresponding
d6

nm�F� � �1 2 ng6
nm�F�	�m. Since g2

mn � d1
nm, the

function in Eq. (14) takes the same value for g1
nm and

g2
mn. Therefore we can restrict ourselves to the solutions

gnm :� g1
nm. The pointwise minimum over all possible

choices for n, m of
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Rnm�F� � H2�ngnm� 1 ngnm log
n
m

1 logm , (17)

defined on the domain n
d # F #

n1m
d , is the required

function R�F�. The restriction on the domain comes from
requiring that gnm is a proper solution of Eq. (16) which
implies that F #

n1m
d . On the other hand we demand that

dnm $ 0 which implies that F $
n
d . In this regime one

can verify that gnm $ dnm.
When m � 0, g and F are uniquely determined by the

constraints, i.e., F �
n
d . Since Rn0� n

d � � Rn0m0� n
d � for all

n0 1 m0 � n, we can neglect these cases.
When d � 3, what remains is a minimization over the

three functions R12�F�, R21�F�, and R11�F�, which are
plotted in Fig. 1. For d � 3 we get R�F� � R12�F� [8].
Thus the optimal vector �m is always of the form

�m � �g, d, d� , (18)

satisfying g $ d.
The case d � 3 is the important one, since it turns out

that we can relate all the higher dimensional minima to
d � 3 and prove that

Lemma 2.—For d $ 3 the function R�F� � R1,d21�F�.
Proof.—The case d � 3 is discussed above. Note that

R1,d21�1�d� � 0, which is clearly minimal, so we provide
a proof for F . 1�d. Let the minimum be attained in
d . 3 dimensions by a vector �m � � mi�. Let us select
some subset of the entries of �m, the set � mij �

d0

j�1, wherePd0

j�1 mij � k # 1. Since �m is the minimum, it follows

that the set � mij �
d0

j�1 is the minimum when we keep the
other entries of the vector �m fixed. Let m

0
j :�

mij

k . The
vector �m0 is the solution for the minimization of

d0X
i�1

h� m0
ik� � k

"
d0X

i�1

h� m0
i�

#
1 h�k� , (19)

under the constraints
Pd0

j�1 m
0
j � 1 and

Pd0

j�1

q
m

0
j � C ,

where
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FIG. 1. The Rnm�F� functions for d � 3. The solid line is
R12�F�, which is the minimal one. The dotted and dashed lines
are R11�F� and R21�F�, respectively.
C �

s
dF
k

2
1
p

k

X
ij;j,ifiij

p
mi . (20)

This last equation can always be written as C �
p

d0F0

for some F0. Thus the restricted minimization problem
is equivalent to a d0-dimensional version of the original
problem, up to the scaling factor k and the additive term
h�k�. When F0 #

1
d0 , we know that solution of this mini-

mization problem is given by a Schmidt vector �m0 which
corresponds to an unentangled state; i.e., it is of the form
�m0 � �1, 0, . . . , 0�. Let us choose three arbitrary mi out
of the optimal vector �m. When the resulting F0 #

1
3 , it

follows that �m0 � �1, 0, 0�. When F0 .
1
3 , the three entries

of �m0 have to satisfy Eq. (18). So in fact, in both cases
they satisfy Eq. (18). Suppose now that one entry of �m
is equal to zero. Then it follows that �m cannot have two
nonzero entries since this would violate condition (18); in
other words it must be that �m � �1, 0, . . . , 0�. But this is
a solution for F � 1�d. Therefore we get n 1 m � d
for F . 1�d. Suppose that n $ 2. We can choose the
vector �g, g, d� satisfying g $ d. Then condition (18)
implies that g � d. This implies that all entries of �m are
identical, or �m � � 1

d , . . . , 1
d �. This corresponds to a maxi-

mally entangled state, which is the unique solution for
F � 1. Therefore n � 1 and m � d 2 1. �

Lemma 1 and Lemma 2 together result in the following:
Theorem 1.—The entanglement of formation E� rF� for

isotropic states in Cd ≠ Cd (d $ 2) for F [ �1�d, 1� is
given by

E� rF� � co���R1,d21�F���� , (21)

where

R1,d21�F� � H2���g�F���� 1 �1 2 g�F�	 log�d 2 1� , (22)

with

g�F� �
1
d

∑
p

F 1

q
�d 2 1� �1 2 F�

∏2

. (23)

For d � 3 the first and second derivative of the function
R12�F� are plotted in Fig. 2. The figure shows that the
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FIG. 2. The first and second derivative of R1,d21�F� for d � 3.
The solid line is the second derivative, which is going to 2`
for F � 1. The dashed line is the first derivative.
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function R12�F� is not convex near F � 1; its second
derivative is not positive. In order to determine co���R12�F����
for d � 3 we solve the following equations: Let
Eline�F� � aF 1 log3 2 a be the line crossing through
the point �1, log3�. We solve (i) Eline�F� � R12�F� and
(ii) dEline

dF � a �
dR12

dF for a and F. Figure 2 indicates
2628
that R12�F� is monotonically increasing and that there
is only one region where R12�F� is not convex, namely
near F � 1. Therefore the solution to the equations will
be unique: we find that F � 8�9 and a � 3. For higher
dimensions, we conjecture, based on examining these two
equations, that the entanglement of formation in Cd ≠ Cd

is given by
E� rF� �

8>><
>>:

0 , F #
1
d ,

R1,d21�F� , F [ � 1
d , 4�d21�

d2 	 ,
d log�d21�

d22 �F 2 1� 1 logd , F [ � 4�d21�
d2 , 1	 .

(24)
The correctness of this solution can easily be verified for
a given d by plotting the function R1,d21�F� and its second
derivative and noting that the convex hull of R1,d21�F�
is obtained by calculating where R1,d21�F� meets the line
going through the point �F � 1, E � logd� and R0

1,d21�F�
equals the slope of this line.

It is surprising to find that E� rF� is nonanalytic in the
region where rF is an entangled density matrix. Another
feature of our solution is that for, say, d � 3 and F . 8�9
an optimal decomposition of rF is not one in which every
pure state has an equal amount of entanglement. Indeed,
the optimal decomposition that we find, is a mixture of
the maximally entangled state and the ensemble of states
jc� obtained by twirling, each of which has entanglement
E � 21�3 1 log3. Since every state in the optimal de-
composition of rF has, under twirling, a value of entangle-
ment on R1,d21�F�, every optimal decomposition of rF for
d � 3 in the range F . 8�9 will be a mixture of the maxi-
mally entangled state and some less entangled states. This
is in contrast with optimal decomposition for E for two
qubits. For F . 8�9 more than d2 � 9 pure states must
be used in the optimal decomposition of rF . We make
rF from a maximally entangled state and the state rF�8�9
which has rank 9, and thus needs at least 9 states in its
optimal decomposition. In total, this gives 10 states. For
F . 8�9 there is no optimal decomposition with fewer
states: one always has to mix in the maximally entangled
state with some probability. The remaining state r

0
F ei-

ther has rank 9 (like rF�8�9) or a lower rank. If it has a
lower rank, it must be separable, which would imply that
the optimal decomposition is made from mixing a separa-
ble state with a maximally entangled state which we know
to be false. This is the first example of an entangled state
for which it is proved that the number of pure states in the
optimal decomposition exceeds the rank of the state (see
Ref. [10] for separable states with this property).

Crucial in our method is the invariance of the isotropic
states under a symmetry group of local operations. A result
similar to Lemma 2 will hold, for example, for the class
of Werner states [9] which are invariant under the transfor-
mation U ≠ U for all U [ U�d �. Let SU≠U be defined
as in Eq. (5) but with the omission of the complex conju-
gation. The Werner states rW
p are characterized by a single

parameter p. One can prove that E� rW
p � � co���R� p����

where

R� p� � min�E�jc� �cj� j SU≠U�jc� �cj� � rW
p � . (25)

It may thus be possible to carry out a similar analysis as
was done here for the Werner states. In a further general-
ization one could consider the entanglement of formation
for g ≠ g or g ≠ g� invariant states where g [ G and G
is a subgroup of U�d �.
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