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Longitudinal Magnetic Excitations in Classical Spin Systems
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Using spin dynamics simulations we predict the splitting of the longitudinal spin-wave peak in all
antiferromagnets with single site anisotropy into two peaks separated by twice the energy gap at the
Brillouin zone center. This phenomenon has yet to be observed experimentally but can be easily inves-
tigated through neutron scattering experiments on MnF2 and FeF2. We have also determined that for all
classical Heisenberg models the longitudinal propagative excitations are entirely multiple spin wave in
nature.

PACS numbers: 75.30.Ds, 75.10.Hk, 75.40.Mg
While the transverse component of the dynamic struc-
ture factor is well understood, including the phenomenon
of multiple transverse excitations [1], the mechanism
for longitudinal excitations in high spin magnets with
weak to moderate anisotropy, like MnF2, FeF2, RbMnF3,
EuO, and EuS, is not completely understood. There are
conflicting theoretical predictions [2,3] and experimental
results of limited resolution [3–5]; however, the spin
dynamics simulation technique is able to analyze both the
transverse and longitudinal components of the dynamic
structure factor for simple classical Heisenberg models.
This is true in both the hydrodynamic and critical tempera-
ture regimes and, unlike mode coupling theory, the accu-
racy of our results can be improved continuously through
the use of more computer time. Indeed using high speed
supercomputers we have already achieved considerably
higher precision than existing experimental results.

The above materials all have spin values (S $ 2) which
are large enough to be effectively described by the clas-
sical limit, S ! `, and bilinear exchange interactions be-
tween nearest, and in some cases second neighbor atoms
on simple lattice structures. RbMnF3 is a simple cubic
(sc) antiferromagnet, MnF2 and FeF2 are body centered
cubic (bcc) anisotropic antiferromagnets with weak and
moderate anisotropy, respectively, and EuO and EuS are
ferromagnets. The degree of anisotropy in EuO, EuS, and
RbMnF3 is negligible. While for EuO and EuS, and to a
lesser extent MnF2 and FeF2, the second neighbor interac-
tions are not negligible, a qualitative understanding of the
magnetic dynamics can still be obtained through a model
with only nearest neighbor interactions.

We performed our simulation on the isotropic sc
Heisenberg magnet with both ferro- and antiferromagnetic
bilinear interactions and the anisotropic bcc Heisenberg
antiferromagnet. The Hamiltonian for our model is given
by

H � J
X

�rr0�
Sr ? Sr0 2 D

X

�r�
�Sz

r �2, (0.1)

where Sr is a three-dimensional classical spin of unit
length, �rr0� is a nearest neighbor pair, and D is the
uniaxial single-site anisotropy term. We determined the
0031-9007�00�85(12)�2601(4)$15.00
dynamic structure factor in the [100], [110], and [111]
reciprocal lattice directions. For the antiferromagnetic
case we have made the transformation q ! q 1 Q where
Q is the Brillouin zone boundary in the �111� direction.

We have used the spin dynamics simulation technique,
which has been developed in previous work [6,7], to calcu-
late the dynamic structure factor. The spin dynamics simu-
lation technique involves the creation of an equilibrium
distribution of initial configurations using the Monte Carlo
(MC) technique which are then precessed through constant
energy dynamics to yield the space-time correlation func-
tion from each configuration. These are averaged together
and Fourier transformed to obtain a result for the dynamic
structure factor. By including more initial configurations
the accuracy can be improved indefinitely. We have used
periodic boundary conditions and studied lattices of linear
sizes of L � 12 and L � 24. The critical temperatures
were determined using the fourth order cumulant crossing
technique [8] for the anisotropic systems, and Tc is already
accurately known for the isotropic Heisenberg model [9].
Anisotropy value D � 0.0591 was used for MnF2 to match
the experimentally determined [10] degree of anisotropy.

For all these models we performed the simulation at tem-
perature T � 0.5Tc, low enough to be completely outside
the critical regime but not too low for the MC simula-
tion to produce an equilibrium distribution of configura-
tions. We also studied T � 0.8Tc and T � 0.9Tc for the
isotropic ferromagnet to investigate the approach to the
critical regime. The results from the higher temperature
simulations were convoluted with a Gaussian resolution
function of width dv to minimize effects due to the finite
time cutoff. For the isotropic case we used a distribution
of 1000 initial configurations for L � 12 and 200 configu-
rations for L � 24, and for the anisotropic case we used
6000 configurations for L � 12 and 400 configurations for
L � 24. A smaller number of configurations was used for
L � 24 due to limits of computer time.

For the longitudinal component of the dynamic struc-
ture factor in the ferromagnetic case we observed many
excitation peaks, as seen in Fig. 1; however, a different
set is present for the L � 12 and L � 24 lattice sizes at
the same q value. We conjecture that these excitations are
© 2000 The American Physical Society 2601
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FIG. 1. The longitudinal component of the dynamic structure
factor for the isotropic sc ferromagnet vs frequency. The pre-
dicted positions of the two-spin-wave peaks are superimposed
on the graph of the dynamic structure factor. Note that a loga-
rithmic scale has been used for the dynamic structure factor.

two-spin-wave peaks since due to finite lattice size effects
the frequencies of the peaks will be limited to certain val-
ues which will be different for different lattice sizes. In
order to test this hypothesis we need to be able to predict
the expected positions of the two-spin-wave peaks. This
requires that we obtain an approximate estimate for the
general form of the dispersion curve at the temperature at
which the simulation is performed, i.e., v�q� at all points
on the reciprocal lattice.

The dispersion curve at T � 0 will be given by the lin-
ear spin-wave dispersion curve, v�q�. We found that for
temperatures below T � 0.5Tc the functional form of the
dispersion curve is maintained, multiplied by the factor
D�T ��D�0�, where D�T � is the spin-wave stiffness coef-
ficient. At T � 0.5Tc the functional form diverges only
slightly in the high q region where the prediction is at a
lower v value than the actual result, however in the low q
region this approximation is still valid. Now that we have
determined that the linear spin-wave result multiplied by
the factor D�T ��D�0� is a good approximation to the dis-
persion curve at T � 0.5Tc in the low q region, we can
estimate the spin-wave frequency in all directions in recip-
rocal lattice space, not just those we have measured.

All two-spin-wave creation peaks will be at frequency

v1
ij �qi 6 qj� � v�qi� 1 v�qj� (0.2)

and the spin-wave annihilation peaks will thus be at
frequency

v2
ij �qi 6 qj� � v�qi� 2 v�qj� , (0.3)

where qi and qj are the wave vectors of the two spin waves
which comprise the two-spin-wave excitation. As shown in
Fig. 1, for the isotropic ferromagnet we see a near perfect
match of peaks in S�q, v� and the predicted positions of the
two-spin-wave annihilation peaks, clearly indicating that
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the excitations in the longitudinal component are due to
two-spin-wave annihilation.

For the anisotropic antiferromagnet the approximation
of the dispersion curve from a measurement of D�T � is
inaccurate since the actual dispersion curve does not fol-
low the functional form of the zero temperature disper-
sion curve. Instead we identified a set of two-spin-wave
annihilation and creation peaks which involve spin waves
exclusively in the reciprocal lattice directions which we
measured. Plotting the expected frequencies of these two-
spin-wave peaks we see a good match between the lon-
gitudinal spin waves and the expected values for both
the annihilation and creation peaks. This result for weak
anisotropy (MnF2) is shown in Fig. 2. Note that no trace
of a peak is seen at the location of the single spin-wave
peak in the transverse component. We see, as expected,
the presence of both creation and annihilation spin-wave
peaks for the isotropic antiferromagnet as well.

The two-spin-wave peaks where one of the single spin
waves of which they are made up has the lowest q are
the most intense. This is to be expected since the lower
q single spin waves are more intense themselves. As
the temperature rises the two-spin-wave peaks broaden.
For the antiferromagnetic case, where the longitudinal
and transverse components cannot be separated, as T
approaches Tc the two-spin-wave peaks disappear into the
tails of the single spin-wave peak and the diffusive central
peak. For the ferromagnetic case the two-spin-wave
peaks do not disappear entirely, the two-spin-wave peak
corresponding to the lowest q spin waves remains and the
other two-spin-wave peaks broaden to disappear into its
tail. A previous study by Chen et al. [6] misidentified the
peak in the longitudinal component as a single spin-wave
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FIG. 2. The longitudinal component of the dynamic structure
factor for the weakly anisotropic antiferromagnet, MnF2 vs fre-
quency. We compare the predicted positions of two-spin-wave
peaks to the actual peak positions. The dotted lines are pre-
dicted positions of two-spin-wave annihilation peaks and the
dashed lines are the predicted positions of two-spin-wave crea-
tion peaks. Note that once again we have used a logarithmic
scale.
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excitation. This happened because they were only able to
look in the [100] lattice direction for which the dominant
two-spin wave is at the same frequency as the single spin-
wave peak for any given q. Since for ferromagnets only
spin-wave annihilation peaks are present, the dominant
two-spin wave process found in the [100] direction is
�q, 0, 1� 2 �0, 0, 21�. Since in the low q limit v ~ q2,
v��q, 0, 0�� � v��q, 0, 1�� 2 v��0, 0, 21��. This is how-
ever not the case for the [111] direction. In Fig. 3 we
show the longitudinal and transverse components in the
[100] and [111] directions at temperatures approaching
Tc. Note the fact that the longitudinal and transverse
spin wave peaks are at the same frequency in the [100]
direction but not in the [111] direction.

The existence of a set of finite two-spin-wave peaks is an
artifact of the finite size of the lattice we use in our simu-
lation. If one were to measure the longitudinal component
of the dynamic structure factor for a real crystal, i.e., effec-
tively an infinite lattice of magnetic moments, the spectrum
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FIG. 3. The longitudinal and transverse components of the dy-
namic structure factor vs frequency as temperature approaches
the critical regime are shown; (a) shows the [100] direction and
(b) shows the [111] direction. A resolution function with coef-
ficient dv � 0.01�jJj was used. The data are unnormalized to
show the relative intensities of the longitudinal and transverse
spin-wave peaks.
of possible two-spin-wave peaks would be continuous.
The longitudinal component of the dynamic structure fac-
tor for the isotropic antiferromagnet has been measured
experimentally by Cox et al. [5]. Taking measurements
in the [111] direction, they found a diffusive central peak
and a propagative spin-wave peak at the same frequency
as the transverse single spin-wave peak. The longitudinal
component of the dynamic structure factor for the isotropic
ferromagnet EuO has been found experimentally to have a
propagative spin wave and no diffusive central peak [4].

For both the ferro- and antiferromagnetic cases, the
longitudinal excitations at the single spin-wave peak fre-
quency can be explained in terms of two-spin-wave peaks
as follows. Since spin-wave intensity increases with de-
creasing q the most intense two-spin waves will be those
which are comprised of one spin wave with a very small q
and another spin wave with a q very close to the resultant
two-spin wave q. If we look at the limit of infinite lat-
tice size, i.e., the real system, for the isotropic case a spin
wave with extremely small q will have a negligible fre-
quency. Thus the intensity of the two-spin-wave creation
and annihilation peaks will have a maximum at the single
spin-wave frequency. Even though only annihilation two-
spin-wave peaks are present for the ferromagnetic case one
should still see this effect in both the ferro- and antiferro-
magnetic cases and this is what is seen in the experiments
[4,5]. We see no evidence of a diffusive central spin-wave
peak in the longitudinal component of the dynamic struc-
ture factor for the isotropic ferromagnet in agreement with
the experimental results of Dietrich et al. [4], and the theo-
retical result of Villain [11] but in disagreement with the
theoretical predictions of Vaks et al. [2].

When we apply this same reasoning to the anisotropic
antiferromagnet, which as shown in Fig. 2 also displays
the same two-spin-wave peak behavior, we are left with
an extremely intriguing result which can be measured ex-
perimentally. A spin wave at very small q will no longer
have a negligible frequency but instead the frequency of
the energy gap at the Brillouin zone center. If our hy-
pothesis about the origin of excitations in the longitudi-
nal component of the dynamic structure factor is correct
then for an anisotropic antiferromagnet one will observe
an apparent splitting in the spin-wave peak in the longi-
tudinal component. In an infinite lattice there will be a
peak due to two-spin-wave creation which is shifted up-
wards from the single spin-wave frequency by an amount
equal to the energy gap, and a spin-wave annihilation peak
shifted downwards by the same frequency. While it is a
very difficult experiment to perform, given a large enough
crystal of MnF2, one could perform a polarization analysis
and separate the transverse and longitudinal components
of the spin excitations [12].

The theoretical explanation as to why the longitudinal
component of the dynamic structure factor is made up of
two-spin-wave peaks and why only two-spin-wave annihi-
lation peaks are present for the ferromagnetic case while
2603
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both two-spin-wave annihilation and creation peaks are
present for the antiferromagnetic case is as follows. If we
express the dynamics in quantum mechanical formalism
the spins, as they appear in the Hamiltonian, are expressed
in terms of the operators S1

i , S2
i , and Sz

i where

S1
i � Sx

i 1 iS
y
i , (0.4)

S2
i � Sx

i 2 iS
y
i . (0.5)

S1
i and S2

i can be expressed in terms of ladder operators,
ai and a1

i , which raise or lower Sz
i by one quanta. In the

linear approximation

S1
i � �2S�1�2a

y
i , (0.6)

S2
i � �2S�1�2ai . (0.7)

If we take the approximation for Sz
i to one order higher

than Sz
i � S then

Sz
i � S 2 a

y
i ai � S 2

1
2S

S1
i S2

i . (0.8)

For the classical limit this corresponds to an infinitesi-
mal raising and lowering of the z component of the spin
which is a longitudinal spin wave. These spin waves will
be at the frequencies corresponding to the difference be-
tween the frequencies of single transverse spin waves since
they result from creation followed by annihilation of a spin
wave. Thus for the ferromagnetic case all two-spin-wave
excitations will result from these annihilation processes.
This result could probably be also obtained using an ana-
lytical spin-wave calculation, for example, possibly using
the Holstein-Primakoff formalism [13], however such an
analysis is beyond the scope of this paper.

Unlike the ferromagnetic the antiferromagnet is not a
quantum state of the Heisenberg Hamiltonian. As a result
the ai and a1

i are replaced through a Bogoliubov transfor-
mation by new operators which are a linear combination
of the creation and annihilation operators but which only
connect excitations on the same sublattice [14]. As a re-
sult both creation and annihilation two-spin-wave excita-
tions exist.

In conclusion, for magnets which can be described by a
classical spin model, the longitudinal propagative excita-
tions are made up of two-spin-wave peaks. In agreement
with our theoretical picture only annihilation two-spin-
wave peaks were present for the ferromagnetic case but
both annihilation and creation two-spin-wave peaks are
present for both the isotropic and anisotropic antiferromag-
nets. As the temperature approached the critical regime
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the longitudinal two-spin-wave peaks broadened and con-
verged into a single peak at the frequency of the dominant
lowest-q two-spin-wave peak. In an isotropic lattice of in-
finite size, i.e., a real crystal, the two-spin waves will result
in a peak at the single spin-wave frequency for either ferro-
magnetic or antiferromagnetic isotropic systems, in agree-
ment with experimental results [4,5]. For the anisotropic
antiferromagnet both creation and annihilation two-spin-
wave peaks exist, and the longitudinal component of the
anisotropic antiferromagnet should show two peaks; a two-
spin-wave annihilation peak at the single spin-wave peak
frequency minus the energy gap frequency, and a two-spin-
wave creation peak at the single spin-wave peak frequency
plus the energy gap frequency. This result indicates the
presence of a new form of excitation behavior in magnetic
materials which can be directly tested experimentally.

We thank Shan-Ho Tsai, Roderich Moessner, Werner
Schweika, and Michael Krech for helpful suggestions and
stimulating discussions. This research was supported in
part by NSF Grant No. DMR9727714.

*Current address: Max Planck Institute for Polymer Re-
search, Ackermann Weg 10, Mainz 55128, Germany.

[1] U. Balucani and V. Tognetti, Riv. Nuovo Cimento 6, 39
(1976).

[2] V. G. Vaks, A. I. Larkin, and S. A. Pikin, Sov. Phys. JETP
26, 647 (1968).

[3] P. W. Mitchell, R. A. Cowley, and R. Pynn, J. Phys. C 17,
L875 (1984), and references therein.

[4] O. W. Dietrich, J. Als-Nielsen, and L. Passell, Phys. Rev.
B 14, 4923 (1976).

[5] U. J. Cox, R. A. Cowley, S. Bates, and L. D. Cussen,
J. Phys. Condens. Matter 1, 3031 (1989).

[6] K. Chen and D. P. Landau, Phys. Rev. B 49, 3266 (1994).
[7] A. Bunker, K. Chen, and D. P. Landau, Phys. Rev. B 54,

9259 (1996).
[8] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
[9] K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev.

B 48, 3249 (1993).
[10] J. Als-Nielsen, in Phase Transitions and Critical Phenom-

ena 5A, edited by C. Domb and M. S. Green (Academic
Press, New York, 1976).

[11] J. Villain, in Critical Phenomena in Alloys, Magnets and
Superconductors, edited by R. E. Millis, E. Asher, and R. I.
Jaffee (McGraw-Hill, New York, 1971), p. 423.

[12] W. Schweika (private communication).
[13] C. Kittel, Quantum Theory of Solids (John Wiley & Sons,

New York, 1963).
[14] D. C. Mattis, The Theory of Magnetism I: Statics and Dy-

namics, Springer Series in Solid-States Science Vol. 17
(Springer-Verlag, Berlin, 1988).


