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Behavior of Shell Effects with the Excitation Energy in Atomic Nuclei

J. L. Egido and L. M. Robledo
Departamento de Fisica Teórica C-XI, Universidad Autónoma de Madrid, 28049 Madrid, Spain

V. Martin
Facultad de Informática, Universidad Politécnica de Madrid, 28660 Madrid, Spain

(Received 19 October 1999)

We study the behavior of shell effects, like pairing correlations and shape deformations, with the
excitation energy in atomic nuclei. The analysis is carried out with the finite temperature Hartree-Fock-
Bogoliubov method and a finite range density dependent force. For the first time, properties associated
with the octupole and hexadecupole deformation and with the superdeformation as a function of the exci-
tation energy are studied. Calculations for the well quadrupole deformed 164Er and 162Dy, superdeformed
152Dy, octupole deformed 224Ra, and spherical 118Sn nuclei are shown. We find, in particular, the level
density of superdeformed states to be 4 orders of magnitude smaller than for normal deformed ones.

PACS numbers: 21.60.Jz, 21.10.Ky, 21.10.Ma
It is well known that atomic nuclei can store up to
a few hundreds MeV as internal excitation energy. In
this situation the nucleus can be described in statistical
terms by assigning equal probabilities to all nuclear lev-
els of a given internal energy; see [1] for a recent re-
view. This microcanonical description can be transformed
to a more convenient, but approximate, form in which
the equilibrated nucleus can be characterized by a certain
temperature T (canonical description). One of the most
striking features of a heated nucleus is that physical ef-
fects like superfluidity or shape deformations are washed
out when T increases. In terms of the shell model it
can be easily understood since by increasing T one pro-
motes particles from levels below the Fermi surface to lev-
els above it. In the case of pairing correlations, blocking
levels amounts to destroying Cooper pairs. In the case
of shape deformation, by depopulating the deformation
driving levels (intruders) one gets on the average less de-
formation. Experimental information about nuclear shape
changes can be obtained by means of the giant dipole reso-
nance (GDR) built on excited states. Exclusive experi-
ments studying the GDR strength at a given excitation
energy (or T ) of the nucleus have been carried out in [2–4].
In the finite temperature mean field theory these effects
show up as a phase transition at critical T ’s in the range of
0.5 3.0 MeV. It is clear that, as the nucleus is a finite sys-
tem, the sharp phase transitions obtained in the mean field
approach will be somewhat washed out when statistical
fluctuations around the mean field solution are considered.
The statistical fluctuations can be treated in the spirit of
the Landau theory [5] or from a more fundamental point
of view by using path integral techniques like the static
path approximation [6,7] or the shell model Monte Carlo
[8]. The latter techniques have been applied to a variety
of physical situations using separable interactions defined
in restricted configuration spaces but not with effective
interactions.
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Finite temperature Hartree-Fock (FTHF) studies in
Refs. [9,10] analyzed shape transitions in finite nuclei.
The authors studied spherical nuclei and the quadrupole
deformed 168Yb as a function of T using the Skyrme III
interaction. For 168Yb they found a phase transition to
the spherical shape at T � 2.5 MeV. The disappearance
of superfluidity with T was first studied by Moretto
[11] with a microcanonical formalism and by Goodman
[12] in the FTHF-Bogoliubov theory (FTHFB) with a
schematic interaction. Several authors have also carried
out studies on the critical T ’s for the transition from
quadrupole to spherical shape and from the superfluid
phase to the normal one using the pairing 1 quadrupole
�P 1 Q� interaction in a restricted configuration space
[13,14]. The main conclusions are that the pairing phase
transition takes place at T ’s around 0.5 MeV and that
the transition to a spherical shape takes place at T ’s
around 1.7 MeV in the cases studied at low spin. The last
conclusion seems to be in contradiction with the results
obtained with the Skyrme III interaction [9] and, as we
shall see, with ours. However, when shape fluctuations
are considered in the P 1 Q model [15] the deformations
around T � 1 2 MeV are closer to the ones obtained, at
these temperatures, in the HFB approach with effective
forces and large configuration spaces. In the latter case,
around these T ’s, shape fluctuations are less important
due to the stiffer energy surfaces.

The purpose of this Letter is to study the behavior
of bulk properties of nuclei at zero angular momentum
with increasing excitation energy using the finite range
density dependent Gogny force [16,17] and a large con-
figuration space. The Gogny force is the only effective
interaction which allows completely consistent calcu-
lations since it provides both the particle-hole and the
particle-particle (pairing) matrix elements. This property
makes the Gogny force a good testing ground of pairing
properties. In addition, the Gogny force can describe all
© 2000 The American Physical Society
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types of shape deformations, as for instance, the reflection
asymmetric octupole shape found in some light actinide,
superdeformation, or the hexadecupole and higher order
components of a given shape. We have carried out
FTHFB calculations for nuclei in the rare earth and ac-
tinide regions to determine the critical T of the superfluid-
normal transition, the shape transition from quadrupole
deformed (normal deformed, ND, and superdeformed,
SD) to spherical nuclei and the transition from octupole
deformed to reflection symmetric shapes. In all cases
the behavior of higher order deformation parameters as a
function of T is analyzed. The FTHFB equation [12,18]
can be derived from the variational principle over the
grand canonical potential V � E 2 TS 2 mN , using
the HFB partition function, E being the energy, S the
entropy, m the chemical potential, and N the average
number of particles in the system. The modifications
induced by the use of a density dependent force are the
same as in the T � 0 case and amount to the introduction
of an extra rearrangement potential in the HF field [9].
The FTHFB equation has been solved by expanding the
quasiparticle operators in an axially symmetric harmonic
oscillator basis containing fourteen shells. The conver-
gence has been checked in selected calculations with 15,
16, and 17 major shells; see also [9]. To avoid eventual
continuum contributions (which, as stated in [19], are
large for T . 4.0 MeV) we shall limit our calculations
to T , 3.0 MeV. Axially symmetric shapes are the only
ones allowed in the calculations, but reflection symmetry
is not imposed in order to study the octupole degree of
freedom. As a consequence, the center of mass position
has to be constrained to be at the origin. The set of
parameters used for the Gogny force is the one called D1S
set [20]. It has been used over the last 15 years to study a
great wealth of low energy nuclear structure phenomena.
For the numerical applications we have chosen nuclei
typifying the effects we want to illustrate.

In Fig. 1 we show some results for the well-deformed
nucleus 164Er as a function of T . In panel (a) the excitation
energy E� versus T is displayed. Aside from the irregu-
larity around T � 0.7 MeV and the smaller one around
T � 2.7 MeV, the behavior is quadratic, as expected in
a Fermi gas—E� � aT2. For T # 1 MeV, the results
are also shown multiplied by 10 for more resolution. In
panel (b) the particle-particle correlation energies [EPP �
1
2 Tr�Dk�] for protons and neutrons are displayed. They in-
crease rather abruptly as T grows and become negligible
at T � 0.7 MeV for protons and neutrons; see inset. This
behavior qualitatively agrees with previous calculations
with the P 1 Q Hamiltonian [13] and other simple model
Hamiltonians and indicates that the vanishing of pairing
with T is a genuine feature independent of the pairing force
used. Quantitatively, however, our calculations with finite
range forces always have higher transition T ’s than the
schematic pairing forces. In panel (c) we have plotted the
b2, b4, and b6 deformation parameters, the b4 and b6
deformation parameters have been scaled. They increase
FIG. 1. Excitation energies (a), pairing energies (b), deforma-
tion parameters (c), and specific heat (d), as a function of T for
the nucleus 164Er.

smoothly at low T up to T � 0.7 MeV, where they start
to decrease. The initial enhancement of the deformation
can be related to the weakening of pairing correlations in
that range of T . At T � 2.7 MeV the deformation param-
eters become zero and the phase transition to the spherical
regime takes place. It is interesting to note that the collapse
to the spherical shape drives all deformation parameters to
zero at the same time and that the critical temperature is
larger than the one found with schematic (separable) forces
and small configuration spaces. These deformation param-
eters are the most probable ones; the inclusion of fluctua-
tions will provide the average deformation parameters.

The irregularities caused by phase changes with T are
more clearly seen in the specific heat �CV � T≠S�≠T �
which we have plotted in panel (d). We observe that there
are indeed changes in CV at the T where the transition to
the nonsuperfluid phase takes place and at the one where
the transition to the spherical phase occurs. The behavior
of the specific heat is rather typical: at low T ’s, where pair-
ing correlations are present, we have a quadratic increase
that becomes linear as soon as the transition to the non-
superfluid phase takes place, for a Fermi gas CV � 2aT
where a is the level density parameter in Bethe’s formula.
For this nucleus we obtain a � 12.98 MeV21 which is
consistent with values obtained with the Skyrme interac-
tion [19] for other nuclei.

For a better understanding of the shape transition we
have plotted in Fig. 2 the self-consistent HF single particle
energies for protons and neutrons as a function of T . We
observe how, as T approaches the critical T of 2.7 MeV,
the single particle levels bunch together into the spherical
levels. The energies of these levels are very close to the
corresponding ones obtained by constraining the nucleus to
the spherical shape in a HF calculation at T � 0. In other
words, in the T range considered in this Letter, at high
27
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FIG. 2. Self-consistent single particle energies of the nucleus
164Er for protons and neutrons versus T .

T the shell effects which drive deformation disappear but
not the ones providing the magic numbers in the spherical
shape.

To analyze shape changes including superdeformation
(SD) we have chosen the nucleus 152Dy which is known
to have a SD minimum a few MeV above the normal
deformed (ND) ground state. Between the SD minimum
and the ND one there is a barrier that prevents the jumping
of the SD mean field configuration to the ND one. As we
shall see, that barrier disappears as the nucleus is heated
and only the ND minimum remains.

In Fig. 3 we show similar results as in Fig. 1 but for
152Dy, dashed lines correspond to values in the SD mini-
mum. In panel (a) the excitation energies of the SD and ND
minima (referred to the ground state, i.e., the ND at zero T )
versus T , are plotted. At zero T the SD minimum is around
7 MeV above the ground ND state. Therefore, we expect

FIG. 3. Same as Fig. 1 for the nucleus 152Dy at the normal and
at the superdeformed minimum.
28
that at a T such that the ND state has an excitation energy
larger than 7 MeV the SD minimum must be washed out.
That is exactly what we find, at T ’s above 0.75 MeV (at
excitation energies larger than 14 MeV) we do not find any
SD solution. In panel (b) we display the pairing energies
for both minima. In the SD minimum the proton pairing is
rather small and vanishes at T � 0.55 MeV, the neutron
pairing is zero as expected, since in the SD there is a shell
closure in neutrons. In the ND minimum the pairing col-
lapse for protons occurs at T � 1.0 MeV and for neutrons
at T � 0.6 MeV. These effects can be observed in panel
(a) in the ND energy curve. In panel (c) the deformation
parameters are plotted. We find large values at the SD
minimum which keep rather constant up to T � 0.5 MeV,
where they start to decrease up to T � 0.75 MeV where
the SD minimum disappears. The ND deformation param-
eters (same symbols as for the SD case) are rather small
and go to zero at T � 1.3 MeV. In panel (d) the specific
heats for both minima are represented, the SD values have
been shifted by 10 units for clarity reasons. In the T region
where the SD minimum exists both curves almost coincide.
This would not be the case if we had plotted the specific
heat versus the excitation energies instead of versus T .

We have also carried out the same kind of calculations
for the nucleus 224Ra, which has been predicted [21] to
have a permanent octupole deformation at T � 0. In
Fig. 4(c) we can study the T driven phase transition from
octupole deformed to a reflection-symmetric shape. For
this nucleus we find that all deformation parameters re-
main more or less constant until the pairing correlations
disappear. From this point on they decrease, the octupole
parameter in a faster way than the other ones, until they
vanish at T � 1.3 MeV. For panels (a), (b), and (d) simi-
lar comments as to the previous figures do apply.

Level densities (l.d.), r�E��, can be microscopi-
cally evaluated in the usual way; see, for example,

FIG. 4. Same as Fig. 1 for 224Ra.
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FIG. 5. Level density of the nuclei 162Dy, 164Er, 224Ra, and
of the nucleus 152Dy at the normal and at the superdeformed
minimum.

Eq. (2B-14) of Ref. [22]. In Fig. 5 we show these quan-
tities for the nuclei 224Ra, 164Er, 152Dy (in the ND and
SD wells) and 162Dy plotted versus the excitation energy
measured from the ground states. In all cases we observe
the overall expected exponential dependence and the
well-known abnormal behavior at very small excitation
energies of the mean field approximation. For 152Dy it is
interesting to see the different l.d. in the ND well and in
the SD one, at a given energy the l.d. of ND states is about
4 orders of magnitude larger than the one of SD states.
Obviously, these l.d.’s are the multiquasiparticle ones. To
calculate the total l.d. the collective states (rotational and
vibrational) must be included. To do it microscopically is
quite involved. For good rotors, however, the rotational
states can be included phenomenologically assuming that
each multiquasiparticle state is the head of a band. The
l.d. including rotational states are represented in the figure
by the dot-dashed lines and increase the l.d. by about
1 order of magnitude. The inclusion of the vibrational
levels, which is more complicated, will provide another
order of magnitude. To compare with the experiment we
have plotted the data of Ref. [23] for 162Dy, which do
not provide absolute values. At small excitation energies
we do not expect a statistical theory to provide accurate
results. Above 3.0 MeV excitation energy, however, our
results do agree well with the experimental data.

Finally, we have also performed calculations concerning
the pairing phase transition in the spherical nucleus 118Sn,
magic in protons. As T is increased in this nucleus the
neutron pairing energy shows the typical “square root”
behavior and dies out at a T of 1 MeV. The high transition
T we can correlate to the very strong pairing correlations
seen in the ground state of 118Sn at zero T .
In conclusion, for the first time the behavior of shell ef-
fects with varying T is studied using the Gogny force. We
find that the Gogny force produces free-energy surfaces
that are stiffer than those found previously with schematic
forces, thus leading to higher critical T ’s for shape transi-
tions. In all calculated nuclei there is a critical tempera-
ture at which all deformation parameters b2, b3, b4, . . .
collapse to zero. The critical temperature for the quench-
ing of the pairing correlations is higher than for separable
pairing forces. One must be aware, as shown in theories
beyond the FTHFB approximation with schematic forces
and small configuration spaces [15,24], that additional cor-
relations will wash out the sharp transitions found. Lastly,
the level density for superdeformed states is found to be
about 4 orders of magnitude smaller than for normal de-
formed ones
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