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Possible Tricritical Point in Phase Diagrams of Interlayer Josephson-Vortex Systems
in High-Tc Superconductors

Xiao Hu and Masashi Tachiki
National Research Institute for Metals, Tsukuba 305-0047, Japan

(Received 11 February 2000)

A critical value in the product of the anisotropy parameter and the magnetic field is observed in inter-
layer Josephson-vortex systems by extensive Monte Carlo simulations. Below (above) this critical value
the thermodynamic phase transition between the normal and the superconducting states upon tempera-
ture sweeping is first (second) order. It is discussed that the origin of this tricritical point is the highly
anisotropic layered structure of high-Tc superconductors.

PACS numbers: 74.60.Ge, 74.20.De, 74.25.Bt, 74.25.Dw
In the superconducting state, an external magnetic field
applied parallel to the Cu-O plane of a high-Tc supercon-
ductor induces the so-called Josephson vortices. The cen-
ter of a Josephson vortex enters into a block layer, the layer
between two neighboring superconducting Cu-O layers, in
order to save the condensation energy of superconductiv-
ity [1]. The thermodynamic phase transition and the lattice
structure of interlayer Josephson vortices have been attract-
ing considerable interest since the discovery of high-Tc

superconductivity. Using a London theory, the structure
of Josephson-vortex lattice was derived as the compressed
hexagons of triangular lattice pointing along the c axis by
Ivlev, Kopnin, and Pokrovsky [2]. The interlayer shear
modulus was shown to be exponentially small, and the
shear deformation of a rhombic lattice might arise through
a second-order phase transition. However, at higher tem-
peratures fluctuations are more important, and the London
theory is generally inaccurate for discussions about phase
transitions. Considerable effort has been made in order to
clarify the thermodynamic phase transition in Josephson-
vortex systems both experimentally [3–7] and theoretically
[8–13] thereafter. Nevertheless, the understanding for the
problem is still not satisfactory yet. Results obtained by
different techniques even seem to be contrary to each other.
The difficulty in approaching this problem is twofold. On
the experimental side, a small deviation of the direction
of the magnetic field from the Cu-O plane can lead to a
strong influence from the c-axis component of the mag-
netic field on thermodynamic properties of the systems,
since all the high-Tc superconductors are very anisotropic.
On the theoretical side, one has to treat simultaneously
anisotropic intervortex forces, the commensuration of the
vortex alignment with the underlying layered structure, and
thermal fluctuations.

In the present Letter, we report new results of extensive
Monte Carlo (MC) simulations on the thermodynamic
phase transition and the lattice structure of interlayer
Josephson vortices. Our results suggest the existence
of a tricritical point corresponding to a critical value of
product of the anisotropy parameter and the magnetic
field, such that below (above) this critical value the
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thermodynamic phase transition between the normal and
the superconducting states is first (second) order upon
temperature sweeping. A theoretical argument is also
provided supporting this variation in the nature of the
phase transition.

The model Hamiltonian used for the present simulations
is the so-called 3D anisotropic, frustrated XY model de-
fined on the simple cubic lattice [14–16]:
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Here the y axis is along the external magnetic field, and
y�c�x. The unit length of the simple cubic lattice is
the distance d between the neighboring Cu-O layers in a
cuprate. Therefore, the discreteness in the c axis comes
from the underlying layered structure of cuprates, while
that in the Cu-O planes is introduced merely for com-
puter simulations. The coupling constant is given by
J � f

2
0d�16p3l

2
ab . The anisotropy parameter is defined

by g � lc�lab , and determines the ratio between the cou-
plings in the Cu-O plane and along the c axis. In the
present model, fluctuations in amplitudes of superconduct-
ing order parameters and in the magnetic induction are
neglected.

Details of simulation technique are summarized as fol-
lows: The density of flux lines induced by the exter-
nal magnetic field is f � Bd2�f0 � 1�32. A Landau
gauge is adopted so that Ac � 2xB. The system size
is Lx 3 Ly 3 Lc � 384d 3 200d 3 20d, which is com-
patible with the filling factor f � 1�32. There are 240
Josephson flux lines in the ground state. Periodic bound-
ary conditions are applied on phase variables in all di-
rections. A typical simulation process is started from
a random configuration of the phase variables at a high
temperature, such as T � 1.5J�kB. 30 000 and 90 000
MC sweeps are used for equilibration and statistics, re-
spectively, at each temperature. The last configuration
© 2000 The American Physical Society 2577



VOLUME 85, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 18 SEPTEMBER 2000
at a temperature is used as the initial configuration at a
slightly lower temperature, where the temperature differ-
ence is DT � 0.1J�kB. Around the transition tempera-
ture, more than 1 3 106 MC sweeps are adopted at each
temperature, and meanwhile the cooling rate is reduced
to DT � 0.005J�kB. Vortices are identified by counting
phase differences around plaquettes.

In order to compare our simulation results with existing
experimental observations, we choose to study first a sys-
tem of anisotropy parameter g � 8, which is near to that
of YBa2Cu3O72d. The magnetic field corresponding to
f � 1�32 in our simulations is much stronger than those
in experiments, and we come back to this point later. The
temperature dependence of the helicity modulus (a quantity
proportional to the superfluid density) along the magnetic
field and the specific heat is depicted in Fig. 1. There is a
clearly observable d-function like peak in the specific heat
at Tm � 0.96J�kB, where the helicity modulus along the
direction of magnetic field increase sharply from zero [17].
Shown in the same figure is the temperature dependence
of the intensities of Bragg peaks in diffraction patterns at

q
�1�
xc � �6p�8d, 0� and q

�2�
xc � �6p�16d, 6p�d�. There-

fore, a thermodynamic first-order phase transition occurs
at Tm, where the gauge symmetry and translation symme-
try are broken simultaneously, corresponding to the real-
ization of superconductivity and Josephson-vortex lattice,
respectively.

The lattice structure of Josephson vortices at low tem-
peratures is shown in Fig. 2. The unit cell is rhombic with
short axis along the c direction and of a length of 2d, and
the long axis along the x direction and of a length of 32d.
Josephson vortices are distributed in every block layer for
the present parameters g � 8 and f � 1�32. This struc-
ture is the same as that predicted by Ivlev, Kopnin, and
Pokrovsky [2].

FIG. 1. Temperature dependence of the helicity modulus along
the magnetic field, Yy , the specific heat, C, and the intensities
I1 and I2 for the Bragg peaks at q�1�

xc � �6p�8d, 0� and q�2�
xc �

�6p�16d, 6p�d�, respectively, for g � 8 and f � 1�32.
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The lattice structure in Fig. 2 is obviously the ground
state for g $ 8 when the filling factor is fixed at f �
1�32. Therefore we can use it for investigations of
thermodynamic properties for large anisotropy parameters
by a heating process. The specific heats thus obtained are
shown in Fig. 3 for anisotropy parameters g � 8, 9, and
10 (DT � 0.001J�kB and over 7 3 106 MC sweeps for
g � 10 around the transition point). The d-function peak
in the curves for g � 8 and 9, is suppressed for g �
10 [13]. In Fig. 4 we display the temperature and
anisotropy parameter dependence of the gauge invariant
phase difference between nearest neighboring Cu-O
layers �cosfn,n11�. There is a jump in �cosfn,n11�
for g � 8 and 9, which is smeared out for g � 10.
As the jump in �cosfn,n11� is nothing but the jump
in the Josephson energy in units of J�g2, there exists
a latent heat at the transition temperature for g � 8
and 9, but not for g � 10, consistent with the data for
the specific heat. The value of the latent heat itself is too
tiny, about g2 times smaller than that in �cosfn,n11�, to
be detected directly. On the other hand, from a standard
finite-size scaling theory for a first-order phase transition,
the height of the d-function like peak in the specific heat is
proportional to the system size [16]. Therefore, by using
a large system such as the one in our simulations, the
d-function like peak in the specific heat becomes observ-
able as in Figs. 1 and 3 for the first-order phase transitions.

As the anisotropy parameter increases, the melting
temperature decreases because the lattice becomes softer.
This is observable in Fig. 4 where a detailed scale is used
around the transition points. On the other hand, the melt-
ing temperature is bounded from below by the Kosterlitz-
Thouless transition point of a 2D unfrustrated XY model,
TKT � 0.89J�kB. For large anisotropy parameters

FIG. 2. Josephson vortex lattice for g � 8 and f � 1�32 ob-
tained by MC simulations of a cooling process from a random
state at high temperatures.
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FIG. 3. Temperature dependence of the specific heat for g �
8, 9, and 10 and f � 1�32. Data for g � 8 and 9 are shifted
by constants.

discussed here, the decrease of transition temperature is
already very small.

We have performed simulations for anisotropy parame-
ters g � 7, 6, . . . , down to the isotropic case of g � 1
[18] fixing the filling factor at f � 1�32, and observed
first-order phase transitions in all the cases. Therefore, the
present simulation results indicate that there is a critical
anisotropy parameter in between g � 9 and g � 10 for
f � 1�32, below (above) which the phase transition is first
(second) order.

FIG. 4. Temperature dependence of the gauge invariant phase
difference between nearest neighboring Cu-O layers for g � 8,
9, and 10 and f � 1�32. The statistical errors estimated by the
standard block averaging are smaller than the size of marks by
an order. The lines are for guiding the eye.
Now we look for the reason for the suppression of the
first-order phase transition when the anisotropy parame-
ter is increased. Suppose a complete commensuration is
achieved between the alignment of the Josephson vortices
shown in Fig. 2 and the underlying layered structure of
high-Tc cuprates. In other words, the Cu-O layers do not
influence the lattice structure of Josephson vortices, but
merely fix its position in the c direction. In such a case,
the Josephson-vortex lattice should be rescaled into equi-
lateral triangular lattice using the anisotropy parameter g,
and we have the relation

�2d�2 � d2 1 �d�2fg�2

as in Fig. 5, which results in

fg �
1

2
p

3
. (2)

Now we increase the anisotropy parameter from that de-
termined by the above relation when the filling factor f
is fixed. Since the repulsive force between Josephson vor-
tices in the c direction is reduced, the Josephson-vortex
lattice would be compressed in this direction. However,
this reconstruction of Josephson-vortex lattice is forbidden
by the underlying layered structure of the high-Tc super-
conductor. Therefore, the above relation provides a crite-
rion for onset of the intrinsic pinning effect of the layered
structure on the formation of Josephson-vortex lattice. For
anisotropy parameters larger than that evaluated by the
above relation, the lattice structure of Josephson vortices is
determined by both the intervortex repulsions and the pin-
ning force of the underlying layered structure. The ther-
modynamic phase transition associated with the formation
of the Josephson-vortex lattice can be different in the two
regions divided by the above relation.

Numerically, the critical anisotropy parameter for the
filling factor f � 1�32 is evaluated as g � 16�

p
3 �

9.24 by the relation (2). This estimate coincides well
with our simulation results, in which first-order phase
transitions are observed for g # 9 but not for g $ 10.
We have also performed simulations for the filling factor
f � 1�25, and found the variation of phase transition
from first to second order around g � 8. This observation
is consistent with the relation (2), since for f � 1�25
one has the critical anisotropy parameter g � 7.22. For
f � 1�36, we have observed a first-order phase transi-
tion even for g � 10, consistent with the critical value
g � 10.39. Therefore, our simulation results indicate

FIG. 5. Real-space unit cell of the Josephson-vortex lattice in a
layered, highly anisotropic superconductor under a strong mag-
netic field.
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clearly that the critical anisotropy parameter increases
with decreasing filling factor, or magnetic field. Quantita-
tively, the simple relation (2) seems to give a reasonable
estimate on the critical anisotropy parameter.

The same variation in nature of the phase transition
should be observed when the anisotropy parameter is fixed
while the filling factor, or the strength of the magnetic
field, is tuned. The relation (2) can be rewritten as

B �
f0

2
p

3 gd2
. (3)

For YBa2Cu3O72d with g � 8 and d � 12 Å, the criti-
cal magnetic field is estimated as B � 50 T. Therefore
the phase transition in the Josephson-vortex systems in
YBa2Cu3O72d is first order for magnetic fields available
experimentally now, according to our present study. For
Bi2Sr2CaCu2O81y with g � 150 and d � 15 Å, the criti-
cal magnetic field is evaluated as B � 1.7 T, which can be
checked experimentally. We notice the similarity between
our critical magnetic induction (3) and the first transition
field derived by Bulaevskii and Clem [19].

The phase transition observed in the present study oc-
curs in between the transition temperatures of the 2D XY
model for a single superconducting layer TKT and of the
3D XY model for infinite superconducting layers coupled
by the same anisotropy parameter (e.g., T � 1.1J�kB for
g � 10). While the thermodynamic phase transition is
second order without frustrations for both 2D and 3D, it is
first order for small anisotropy parameters and second or-
der for large anisotropy parameters when an external mag-
netic field is applied parallel to the layer.

In highly anisotropic systems, many pairs of Josephson
vortices and antivortices are excited thermally since the
energy cost �J�g2 is small. In these systems, Joseph-
son flux lines induced by the magnetic field collide with
each other in the same block layers frequently even at low
temperatures, and jump into neighboring block layers via
thermally excited pancake vortices when temperature is
elevated (but still below the transition point). There is
no sharp decrease in the number of collisions and entan-
glements at the transition point, in contrast with the first-
order Abrikosov lattice melting when the magnetic field is
along the c axis [16,20].

A possible second-order shear deformation, or decou-
pling, of Josephson vortex lattice has been discussed theo-
retically by Efetov [21], Ivlev, Kopnin, and Pokrovsky [2],
Blatter, Ivlev, and Rhyner [8], and Horovitz [11]. For
anisotropy parameters larger than the critical value in (2),
weakening in the c-axis correlations and the shear modu-
lus by thermal fluctuations should be predominant in the
melting of 3D Josephson vortex lattice. According to
Balents and Nelson [12], a smectic phase (see also [8])
can freeze either into a crystal free of interstitials (normal
solid) via a first-order transition, or into a crystal of in-
terstitials (supersolid [22]) via a second-order transition.
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The phenomena observed in the present study are consis-
tent with these theoretical studies. It should be mentioned
that there are also theoretical works against the decoupling
scenario mentioned above [9,10]. While there seems to
be some consensus for the low magnetic field limit where
there are no flux-line collisions in the same block layers
[9], the high magnetic field limit, the main target of the
present study, has not been settled theoretically with satis-
faction. Therefore, further studies for the present problem
are highly anticipated.

The authors thank L. Bulaevskii, J. Clem, and A. Sudbø
for useful discussions, A. E. Koshelev for calling their at-
tention to Ref. [10], and Y. Nonomura for help in counting
the flux-line entanglement. The present simulations are
performed on the Numerical Materials Simulator (SX-4,
SX-5) of National Research Institute for Metals, Japan.
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