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Towards an Explanation of the Mesoscopic Double-Slit Experiment:
A New Model for Charging of a Quantum Dot
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For a quantum dot (QD) in the intermediate regime between integrable and fully chaotic, the widths
of single-particle levels naturally differ by orders of magnitude. In particular, the width of one strongly
coupled level may be larger than the spacing between other, very narrow, levels. In this case many
consecutive Coulomb blockade peaks are due to occupation of the same broad level. Between the peaks
the electron jumps from this level to one of the narrow levels, and the transmission through the dot at
the next resonance essentially repeats that at the previous one. This offers a natural explanation to the
recently observed behavior of the transmission phase in an interferometer with a QD.

PACS numbers: 73.23.Hk, 05.45.–a, 73.20.Dx
In spite of much progress in the fabrication and experi-
mental investigation of ultrasmall few-electron devices,
such as quantum dots [1], many experimentally observed
features of these systems still remain unexplained.

A challenging problem which has resisted adequate
theoretical interpretation arises from the experiment [2]
which determines the phase of the wave transmitted
through the quantum dot (QD) [3]. The main goal of this
paper will be to find a mechanism which may lead to a
satisfactory explanation of these results. Hopefully our
approach will also allow us to shed some light on other
open problems concerning the Coulomb blockade (CB)
[4] in QDs.

In the experiment in Ref. [2], in addition to the con-
ductance of the QD, the phase of the electron transmitted
through the QD was measured via an interference arrange-
ment. In accordance with the Breit-Wigner picture, the
phase increased by p around each CB peak. Absolutely
unexpected, however, was a fast jump of the phase by 2p

between the resonances near the minimum of the transmit-
ted current. Such behavior is in evident contradiction with
what one would expect if the transmission of the current
proceeds via consecutive levels in a one-dimensional quan-
tum well.

In a two-dimensional QD the phase drops associated
with the nodes of the transmission amplitude already rise
within the single-particle picture [5,6]. However, in order
to have a sequence of such events, one should consider a
QD of a very special form. The model of Ref. [7] also
does not allow one to explain the series of drops. The
mechanism of Refs. [8,9] makes nontrivial assumptions on
the geometry of the QD and the way it changes under the
change of plunger gate voltage. An interesting generic
mechanism suggested recently in Ref. [10] may indeed
lead to the correlations in transmission at many consecutive
valleys, but the predicted phase behavior differs from what
has been seen experimentally.

In this paper we propose a mechanism according to
which the transmission at many CB peaks proceeds
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through the same level in the QD. This means that the
phases at the wings of different resonances should co-
incide and the increase by p at the resonance must be
compensated. This compensation occurs via narrow jumps
between the resonances and is accompanied by a fast
rearrangement of the electrons in the dot.

Although the experiment [2] was clearly done in the CB
regime, the widths of the resonances turned out to have
been anomalously large, only a few times smaller than the
charging energy. Also, the widths and heights of all ob-
served resonances are very similar. These surprising fea-
tures of the results of Ref. [2], which have not attracted as
wide attention as the phase jumps, also find natural expla-
nation within our picture. Our mechanism requires the QD
to not be fully chaotic (neither do we require an integrable
QD). It is not clear how chaotic was the dot used in the
experiment. However, the QD containing �200 electrons
was �50 times smaller than the nominal elastic mean-free
path. Thus, disorder should not have been essential for the
dynamics of the electrons.

It is generally believed that the CB is observed only if
the widths of resonances are small compared to the single-
particle level spacing in the dot D. This condition assumes
that couplings of all levels to the leads are of the same order
of magnitude. However, as we will show at the end of this
paper, even for nonintegrable ballistic QDs the widths of
the resonances may vary by orders of magnitude. In this
case it does not make sense to compare the width of few
broad resonances with the level spacing determined by the
majority of narrow, practically decoupled, levels.

A useful theoretical model for the description of charg-
ing effects in QDs is the tunneling Hamiltonian in the con-
stant interaction �UCB� approximation (see, e.g., [4]):
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Here c �c1� and a �a1� are the annihilation (creation) op-
erators for electrons in the dot and in the lead and ´i , ´�k�
are the single-particle energies. We do not introduce the k
dependence of the tunneling matrix elements ti . Since our
approach is mainly based on the energetics of the QD, it
is enough to consider only one lead. Summation over spin
orientations is easily included. Also, under the assumption
of capacitive coupling to the gate, the levels in the dot flow
uniformly with the voltage,

´i � ´i�Vg � 0� 2 Vg . (2)

The energies of the electrons in the wire are given by

´�k� � k2�2m 2 EF . (3)

Here k � np�L, a (very) large n is the level number in
the wire, and L is the length of the wire.

For our purposes, it will be possible to simplify further
the Hamiltonian (1). We will consider the case where
the coupling of one particular level N is dominant, tN ¿
ti , i fi N . If the width of this level is larger than the
single-particle level spacing D, a very nontrivial regime
of charging of the QD may be described by means of
second-order perturbation theory estimates. Surprisingly,
this simple limit of CB has not yet been considered.

An example of a system for which the widths differ
drastically is the integrable QD [8,9]. However, it is hard
to believe that the large �Ne � 100 1000� QD may be
even close to integrable. Nevertheless, at least in classical
mechanics, a considerable gap is left between integrable
and fully chaotic systems. Even in a nonintegrable dot,
two types of trajectories—quasiperiodic and chaotic—
may coexist. In this case, in two dimensions any trajec-
tory (even a chaotic one) does not cover all of the phase
space allowed by energy conservation. Consequently, the
corresponding wave functions do not cover all of the area
of the QD. If such a regime is realized in QDs, it easily
explains why the widths of the resonances may vary by
orders of magnitude. Moreover, many other features of
such a QD may differ strongly from those of the chaotic
QD [11]. An explicit numerical example, which supports
the existence of such a regime, will be given later.

Now we turn to the many-particle effects arising for the
Hamiltonian (1) in the case of only one (N th) level in the
dot coupled strongly to the wire,

G � GN � 2pjtN j
2dn�d´ ¿ D . (4)

[Here n is the same as in Eq. (3) and dn�d´ is taken at
the Fermi energy ´ � 0.] The widths of the other levels
are taken to be much smaller than the level spacing and
may be neglected in the first approximation. The charging
energy is still very large, UCB ¿ G. We will show
that transmission of a current at about �G�D� ln�UCB�G�
consecutive CB peaks will proceed through the same
level, ´N .

Let the levels with i # 0 in the QD be occupied. Our
aim is to find the total energy Etot of the true ground
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state of the dot at different values of Vg. Without loss
of generality we may assume that the summation over i
in Eq. (1) goes over only i . 0. (Thus we subtract from
the total energy the trivial constant corresponding to self-
interaction of electrons with i # 0. Coulomb interaction
between electrons at the levels with i # 0 and i . 0 is
included in ´i.0.) Also let us subtract from the total energy
the trivial energy of electron gas in the leads

P
´�k�.

Let us consider spinless electrons. For large positive
´N �Vg� ¿ G the only contribution to the total energy Etot
is given by the second-order correction (the levels in the
wire are lowered due to the repulsion from the unoccupied
level ´N ),
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Here and everywhere below, ´N (as well as, e.g., ´1) is
the function of Vg (2). The upperscript �0� at E

�0�
tot shows

the number of electrons at the narrow levels (with i . 0)
in the QD. Generalization of this result for the case of
negative ´N , ´N ø 2G (the broad level being below the
Fermi energy) is straightforward (note that the level ´N is
occupied, not the level ´1 as one might expect):
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Here the first term ´N accounts for the energy loss due to
the replacement of one electron from the lead to the dot.
The second-order level shift now includes both lowering
of levels with ´�k� , ´N and raising of those with ´�k� .

´N . The perturbative treatment fails for j´�k� 2 ´N j & G,
but the corresponding shifts of levels below and above ´N

evidently compensate each other, which is equivalent to
taking the principal value of the integral in Eq. (5). An
approach related to ours was used recently in Ref. [12] for
the calculation of CB peak positions.

Finally, the exact solution (for spinless electrons) for a
single state interacting with a continuum is also known
(e.g., [13]). A precise treatment of this situation, along the
lines of Ref. [14], yields
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(7)

which coincides with Eqs. (5) and (6) at j´N j ¿ G.
Let us now consider the branch where level 1 in the QD

is occupied. The energy of this electron is ´1. However,
by adding one more electron via the hopping tN now costs
´N 1 UCB. The ensuing reduction of the downward shift
of the level E

�1�
tot is of crucial importance. The analog of

Eq. (5) for ´N 1 UCB . 0 now reads
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For small Vg, one has E
�0�
tot , E

�1�
tot and Eqs. (5)–(7)

describe the true ground state of the system. However,
the two functions E

�0�
tot�Vg� and E

�1�
tot�Vg� cross at

´N � 2
UCB

exp�2p�´N 2 ´1��G	 1 1
, (9)

and the ground state jumps onto the branch E
�1�
tot . The

energy of the current-transmitting virtual state N is positive
again. Thus, the transmission amplitude phase returned to
what it was before the process of filling of state N and
the subsequent sharp jump into the state where level 1 is
filled. It is the latter jump which provides the sharp drop
by p of the transmission phase, following its increase by p

through the broad resonance. Many ���G�D� ln�UCB�G��
consecutive resonances are due to the transition via the
same level N .

For electrons with spin, the Breit-Wigner–related for-
mula (7) does not work. However, far from the resonance
the perturbation theory may still be used (at least until the
temperature is high enough to be away from the Kondo
effect [15]). We are unable to discuss in detail the role of
spin in this Letter. Still, in this case, the many charging
events proceed via the same broad resonance, each accom-
panied by the increase of phase by p which is compensated
by the 2p jump in the valley.

To illustrate the relevance of the model Eq. (1) with
a single strongly coupled level, we performed numerical
simulations for a model QD of size l with a simple poly-
nomial potential (a smooth QD coupled to two leads),

V � 24x2

µ
1 2

x
l

∂2

1

µ
y 1

x2

4l

∂2∑
1 1 8

µ
x
l

2
1
2

∂2∏
. (10)

Because of the strong mixing of the x and y coordinates,
the dot is expected to be nonintegrable, but, similar to the
experimental geometry [2], it is approximately symmetric.
For simulations, we considered the QD on the lattice and
used l � 10, which was equivalent to 50 lattice spacings.
The kinetic term is given by the standard nearest neighbor
hopping. Below we present the results of calculations with
the hopping matrix element t � 18 which corresponds to
the dot with �100 electrons or �200 if the spin is included
(numbers similar to those in the experiment). We have
used the potential V of Eq. (10) for 0 , x , l. The lead
formed by the potential V � 3y2 was attached at x , 0
and a hard wall at x � l.

Within the energy interval 1.5 , ´ , 4.7, only one
mode may propagate along the lead. The analysis of
solutions of the Schrödinger equation within this interval
allowed us to find the positions and widths of quasistation-
ary levels in the dot. As we expected, the widths fluctuate
very strongly from level to level (by many orders of mag-
nitude). In particular the widths of two levels 102 and 108
exceed sufficiently the level spacing G�D 
 6 (the num-
ber of states doubled due to spin). The widths of other
levels vary from G�D � 1 to G�D � 1025 1026.

The origin of the hierarchy of widths becomes clear in
Fig. 1, where we have plotted jcj2 in the QD for (real) ´

at the top of corresponding resonances. The quantized
version of different variants of classical motion may be
found in this figure. The most narrow level, 103, corre-
sponds to a short stable transverse periodic orbit. Other
broader levels, such as 96 and 106, may be considered as
the projections of the invariant tori corresponding to quasi-
periodic classical motion. This classical trajectory reaches
the line V �x, y� � ´ only at a few points. The candidates
for chaotic classical motion (e.g., 110) also correspond to
relatively broad resonances [16]. Even in this case only a
part of the QD is covered by the trajectory. For the most
coupled levels, 102 and 108, the area covered by the tra-
jectory touches the lead by its corner.

Moreover, two well-coupled trajectories contribute to
level 102. This is seen from Fig. 2, where we also show the
jcj2 at the left and right wings of this resonance. One con-
tribution corresponds to the strongly coupled quasiperiodic
trajectory (left), having the “turning point” V �x, y� � ´

just at the left contact. The other contribution comes from
the true periodic trajectory (right). Two quantum states
in the dot become mixed via interaction with the wire, and
they form one broad (102) and one almost decoupled (104)
resonance [17].

We have repeated the calculations several times for
slightly different V and in a broad range of variation of
the hopping. Typically we saw the resonances of very
different widths, and the origin of the broadest peaks was
explained by simple classical arguments.

FIG. 1. The density of electrons in the dot at the resonances
coupled to the single-channel wire (attached from the left). V �
0 is shown as the dashed line. The numbers correspond to the
number of the level in the QD. About 95% of the norm of the
wave function in the dot is shown. The “twin copies” (such as
100 and 112) of levels 94, 96, 101, and 103 are not shown.
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FIG. 2. Decomposition of level 102 into parts corresponding
to simple classical trajectories. The numbers are the energies
for which the figures were done.

Taking into account the different sensitivities of longi-
tudinal and transverse modes to the plunger [8,9] may al-
low us to keep our broad level ´N even longer within the
relevant strip of energy. This may provide an explana-
tion of even longer sequences of resonances accompanied
by the 2p jumps. In a more refined approach, adding
new electrons into the QD should cause a change in the
self-consistent potential V �x, y�. The total energy of the
dot and wire will be lowered in the presence of strongly
coupled levels. This may cause the potential of the QD to
automatically adjust to allow such levels, which will sup-
port our explanation of the experiment in Ref. [2].

Our mechanism for charging the QD requires the exis-
tence of the broad level with G ¿ D. The simple way to
justify the relevance of our theory for the explanation of
the experiment in Ref. [2] is to close the dot sufficiently in
order to have G ø D for all levels. In this case the phase
still increases by p at any resonance, but the correlation
between peaks will disappear. (More precisely the pairs of
peaks corresponding to adding of electrons with opposite
spins onto the same level still are correlated, but correla-
tion between pairs should disappear.) Moreover, within our
mechanism a series of ��G�D� ln�UCB�G� strong charg-
ing peaks in the conductance should have the same height.
This “coupling dependent” correlation of the peak heights
also seems easy to measure.

In conclusion, we have considered the model for which,
upon increasing Vg, it is energetically favorable to first
populate in the dot the level strongly coupled to the leads.
At a somewhat larger Vg a sharp jump occurs to a state
where the “next in line” narrow level 1 becomes popu-
lated. This jump accounts for the sharp decrease by �p

of the transmission phase. The similar strengths of reso-
nances seen in the experiment [2] and their large widths are
also clear within our mechanism. The current transmission
through such a QD resembles the behavior of rare earth
elements, whose chemical properties are determined not
by the electrons with highest energy but by the “strongly
coupled” valence electrons. The overlapping of single-
particle resonances may also take place in the Kondo ex-
periments in QDs [18], where in order to increase the
2568
Kondo temperature the dot is usually sufficiently opened.
Hopefully the unusual effects observed in some of these
experiments may also be explained within our approach.
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