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Shocks and Curvature Dynamics: A Test of Global Kinetic Faceting in Crystals
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We investigate the microscopic mechanisms underlying the dynamical faceting of crystals. Partially
faceted crystal shapes of CCl are formed from a melt contained in a Bridgman apparatus and pressure
is used to control growth which is observed using optical microscopy. In contrast to predictions of
models in which the local interfacial motion is greatest where the step density is the highest, the loss of
rough orientations is observed to occur via a local decrease in curvature which results in the formation
of discontinuities—shocks—in the surface of the growth forms, a feature predicted by a recent theory

of kinetic faceting.
PACS numbers: 81.10.Aj, 81.30.Fb, 82.65.Dp

The study and manipulation of crystallization forms
have captured the interest of artists, engineers and scien-
tists since at least the Bronze Age [1]. Nevertheless, fun-
damental tests of the tenets of the theory of crystal growth
constitute a central and active area of contemporary con-
densed matter science [2]. Crystal growth provides a set-
ting in which microscopic phenomena control macroscopic
shapes, and a natural testing ground for pattern formation
in driven systems [3,4]. In the context of the growth of
semiconductors, microscopic models can often be tested
using the ultrahigh-vacuum probes of surface science [5].
However, many growth forms found in the natural environ-
ment and in metallurgical contexts evolve from the melt
phase and involve length scales that span many orders of
magnitude. The paucity of tests of theories of relevance in
this latter situation motivates the present study.

The qualitative picture of the growth of partially faceted
crystals has a rich history originating in the work of Wulff
[6], Frank [7], and Chernov [8]. Weakly driven growth
forms evolving from partially faceted equilibrium shapes
become more faceted during growth [9]. Qualitatively one
can argue that this is principally because the accretion of
material normal to facets is an activated process whereas
no nucleation barrier exists for rough orientations. Hence,
for a spatially uniform growth drive, the rough orientations
grow more rapidly leaving facets to dominate the shape.
Although this much is known, the general mechanisms
underlying the process have remained obscure. Here we
present observations that test the most robust features of
the process. In contrast to predictions of models in which
the local interfacial motion is greatest where the step den-
sity is the highest, we observe that the loss of rough ori-
entations occurs via a local decrease in curvature which
results in the formation of discontinuities—shocks—in
the surface of the growth forms, a feature predicted by
a recent theory of kinetic faceting [10].

Precisely how the rough orientations are lost depends
on the microscopic details influencing the attachment
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of additional molecules. Intuitive models, in which the
local normal motion is maximal at locations in which the
step density is the highest, predict that the rough orienta-
tions grow out of existence with increasing curvature. In
contrast, models including effects such as surface diffu-
sion find that the growth rate is not a maximum where the
step density is the highest, and the prediction is that the
rough orientations grow out of existence with decreasing
curvature.  These two extremely different qualitative
predictions provide the rostrum for the experimental test
described here.

Growth theories generally treat a single interfacial state,
faceted or rough, or the transition between them, but on a
single closed surface both types of surface structure can
coexist. Typically, when the motion of the interface is
limited by local interfacial processes it can be modeled
as geometric in the sense that the normal velocity V at
an interfacial point depends on the shape and position of
the interface, and not on field variables modified by the
interface motion or long-range diffusion in the bulk (see,
e.g., the review in Ref. [11]). Some of the many situations
wherein such a model is applicable include the early stages
of snowflake growth, when the mean free path in the vapor
is larger than the characteristic size of the crystal, the
growth of electronic materials via molecular beam epitaxy,
the growth of ferromagnetic or ferroelectric domain walls,
grain growth, and stress-driven-zone migration. Here we
focus on the weakly driven growth of a crystal containing
both facets and rough regions which is a situation linking
the disparate interfacial kinetic processes associated with
these distinct types of surface to the global driving force.

A fourfold symmetric crystal is well suited for compari-
son with theory, and hence as an experimental system we
choose carbon tetrachloride (CCly) grown from the melt
under pressure. Owing to a thombohedral unit cell with
90° in the lattice angle [12], CCly grows in a cubic form
[13,14]. Moreover, growth from the melt at fixed tem-
perature and at moderately high pressures (<1000 bars)
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enables us to accurately control parameters such as ini-
tial curvature and growth drive [15]. Pressure transmits to
the sample quickly and uniformly under hydrostatic condi-
tions. Hence, through simultaneous pressure manipulation
and visual inspection, we can produce a partially faceted
crystal with some curvature in rough orientations and then
grow it at very small growth drives. This offers an ideal
test of geometric models.

At a constant temperature of 5 °C, liquid CCly sealed in
an elastic fluorocarbon tube is pressurized by manual op-
eration of a hand pump. The liquid freezes spontaneously
at approximately 1000 bars into a polycrystalline solid. A
single crystal is obtained by reducing the pressure below an
equilibrium value (~750 bars) and melting the polycrys-
tal until only one crystallite remains. A cubic crystal can
be made with continuous curvature between the facets and
subsequently grown. Upon imposition of a small growth
drive to such a partially faceted crystal, we observe the
essential tenets of the theory of global kinetic faceting as
shown in Fig. 1. First, discontinuities in the surface slope
form abruptly, thereby separating rough orientations from
vicinal and faceted orientations. Such discontinuities are
associated with the formation of shocks in the global curve
dynamics [10]. Second, rough regions grow out of exis-
tence with a decreasing curvature; the facets are not mo-
bile and eventually dominate the overall shape. We now
show that neither of these features is predicted by models
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FIG. 1. Growth sequence of a CCly crystal in a high pres-
sure melt. The initial shape contains facets and rough regions
and we display the upper right hand quadrant of a cubic crys-
tal. The growth drive (pressure deviation AP = 1 bar) is ap-
plied at 0 s when the shape is equilibrated at 7 = 5.33 °C and
P,, = 754 bars; Au is proportional to AP and AP = 1 bar
corresponds to Au/kT = 1.4 X 107* [14,15]. Note the fol-
lowing: (i) Discontinuities in the surface slope form abruptly
after 4 s and are more pronounced at 11 s, thereby separating
rough orientations from vicinal and faceted orientations. Such
discontinuities are associated with the formation of shocks in the
global curve dynamics [10]. (ii) The rough orientations grow out
of existence with decreasing curvature, while facets do not grow
at all. The three-dimensional features are clearer at later stages.
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in which regions of high local curvature, where the surface
density of steps is highest, grow the fastest.

The experimentally realizable limits are distinguished
in terms of the magnitude of the growth drive Au, the
chemical potential difference between a molecule in the
parent phase and that on the solid. The first regime occurs
for extremely small A, wherein the accretion of mass
is much slower than all of the available relaxation pro-
cesses, so that the crystal surface is indistinguishable from
the equilibrium crystal shape. This “thermodynamically
slow” or “shape preserving” regime has been observed at
temperatures above, below, and very near the roughening
transition of the prism facet of ice growing from water
(Fig. 3 of Ref. [15]) and can be described via a continu-
ous expansion of the Wulff shape [16]. (The result is also
trivially correct for isotropic surface free energy, a crys-
tal surface everywhere above its roughening transition, or
a liquid drop. One then simply expands a sphere.) In
the second regime A is larger, but nonetheless smaller
than the activation barrier for two-dimensional nucleation
on the facets Au,.. The facets are then pinned and the
rough orientations accrete mass to take the Wulff shape of
an “equilibrium” crystal of increasing size [10,16]. Ulti-
mately the rough orientations grow themselves out of exis-
tence leaving a fully faceted growth form behind. The third
regime is attained again by increasing A u to a value that is
above A . but below the threshold necessary to induce ki-
netic roughening on the facets, A uy,, where we therefore
expect slow normal growth by nucleation and spreading
of monolayers.

We concentrate on two dimensions, which is relevant
to the growth of nuclei on a facet [17,18], the growth of
highly anisotropic materials such as ice [19,20], the evolu-
tion of monolayer surfactant films [21,22], or the growth of
axisymmetric three-dimensional crystals as described here.
Our geometric model is built around an equation for the
local normal velocity V (6, A i) that explicitly accounts for
activated growth on facets, nonactivated growth in rough
regions, and their modification in the vicinal orientations
in a continuous manner [10]. V(6, A ) depends on a spa-
tially uniform driving force, A u, and the orientation of the
surface with respect to the underlying lattice 6 as follows:

V(0,Ap) = Vi(Ap)é(0) + Vo(0,Ap)[1 — £(6)].
(D

Vi, Vo, and ¢ are defined as Vp(Au) = f(Au) X
exp(%), Vo(0,Ap) = gAull + cosl’(%)], and
£(0) = cosm(%), where Vy and V, are the growth
laws on facets and rounded orientations, respectively, o
is the free energy of a critical nucleus on the facet, and &
determines the nature of the transition between facetlike
and rough growth. The mobility coefficients f, g are
influenced by the molecular attachment kinetics, and the
growth rate in vicinal regions has contributions from both
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the birth and spreading of supercritical islands on terraces
and molecular attachment directly to kinks in moving
steps. The combined influence of these two effects on
the normal growth rate is embodied in the second term
of V,(6,Aw). An essential qualitative point is that,
for a given Au, Vy < V,. The equation is valid for
n-fold symmetry, and m and p are even integers such
that m = p. The differential geometry of curves in the
plane [4,10,18,19] allows us to express the evolution of
the curvature « of the surface as

P 3
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where V = (V + %) is the “velocity stiffness” in anal-

ogy with surface stiffness, and d_aT is taken at constant 6.
The curvature evolution at each point of the interface with
initial curvature k; follows immediately as

Ki
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For orientations between the facets, for cubic symmetry
(n=4)andm =p =2, orm =4 and p = 2, we have
V > 0, so it is predicted that the curvature will decrease
monotonically in time from the initial value at that orienta-
tion. This decrease is due to a tendency toward a constant
surface density of steps; in vicinal regions surface diffusion
on the terraces enhances motion normal to the interface, in-
creases the density of sites for attachment, and drives the
region toward a more constant step density. In contrast,
models in which regions with the highest surface density
of steps grow the fastest have V < 0 and this is inconsis-
tent with the experiments as seen visually in Fig. 1 and as
we now show quantitatively.

The relation between V and A is measured for facets
and rounded orientations (at @ = 7r/4) and is shown
in Fig. 2. We observe that the rough orientations grow
linearly with A u, whereas activated growth is observed on
facets, which supports the applicability of the theoretical
models described above to the CCly system. Because the
rough orientations rapidly grow out of existence, obser-
vations of curvature evolution are made at the smallest
growth drives. The radius of curvature of the curved sur-
face between the facets is measured directly as a function
of time. This is the curvature averaged about the § = 7 /4
orientation rather than the local value. The results are
plotted in terms of curvature in Fig. 3 for different initial
curvatures and growth drives. The accuracy in curvature
measurements is approximately 10%. The curvature
decreases linearly with time and the rate at which it
does so increases with the growth drive as predicted
by Eq. (3). We therefore find that V > 0 at § = 77 /4,
and we can estimate the value by assuming that V is
the same order of magnitude as V(=1 um/s). For
experimental values of x; = 10* m~! and 7 =~ 20 s,
k;V7 =~ 0.2, allowing us to approximate Eq. (3) using the
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FIG. 2. V versus Au/kT for rough orientations at § = 7 /4

and facets. Fits are linear and exponential, respectively. For
rough orientations V cannot be measured at larger Ay due to
rapid faceting.

relation k =~ k; — KiZVT. The fits for rate of curvature
decrease K,-Zf/, as displayed in Fig. 3, give the following
estimates: V = 3-4 um/s at Au/kT = 1.4 X 1074
and V = 5-9 um/s at Auw/kT = 2.8 X 107*.

The observations reported here display the macroscopic
influence of the difference in microscopic crystal growth
kinetics: the relaxation rate at rough orientations is neg-
ligible compared with that on the facets, and hence the
latter spread to dominate the growth form. Confirmation
of the principal features of the two-dimensional theory has
been found and quantitative agreement with curvature evo-
lution is excellent until very late times when the influence
of faceting and dimensionality becomes important. The
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FIG. 3. Curvature evolution and fits for V at two initial cur-

vatures and two growth drives. Solid symbols are at «; =
8 X 10° m~!', T = 5.33°C, and P,, = 754 bars; open symbols
are at k; =4 X 10° m™', T = 5.08°C, and P,, = 749 bars.
Circles are at Au/kT = 1.4 X 107* (AP = 1 bar); triangles
are at Au/kT = 2.8 X 107* (AP = 2 bars). Because the re-
gion of rough orientation between the discontinuties must shrink
during the faceting process, the curvature eventually changes
abruptly and the effects of dimensionality become important.
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study forces us to examine the underlying assumptions of
commonly accepted models and provides a framework for
broad based testing of the kinetics of crystal growth in two
and three dimensions.
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