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Orientation Dependence of Surface Critical Phenomena in Antiferromagnets:
Exact Results in Two Dimensions
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For an Ising antiferromagnet, we analyze exact expressions for the one- and two-point correlation
functions for spins on the edge of a square lattice with a magnetic field applied to the surface sites. Two
different edge orientations, with respect to the crystal axes, are treated. At bulk criticality, we confirm
that the surface universality class depends on the edge orientation and show the importance of having
the bulk phase in a pure state. For the two-point function, we find a singularity in the correlation length
due to depinning effects which we argue is also present in higher dimensions.

PACS numbers: 68.35.Rh, 05.50.+q, 75.10.Hk, 75.50.Ee
Since the seminal work of McCoy and Wu [1], it has
been realized that surfaces in uniaxial magnets and their
analogs can display novel phase transitions and critical
phenomena. A key idea for bulk critical phenomena is that
of distinct universality classes. The relevance of universal-
ity classes for surface critical behavior has become increas-
ingly apparent over the past 20 years or so [2,3]. Thus we
now have the picture that surface criticality depends on the
bulk universality class, on relevant surface modifications
(such as fields and coupling strengths) and, most recently,
on the orientation of the surface with respect to the crys-
tal axes. Note that several surface universality classes may
be compatible with a single bulk one. The first theoretical
work on orientation dependence was by Schmid [4], who
carried out Monte Carlo simulations and mean-field calcu-
lations on the Ising antiferromagnet with a free surface on
the bcc lattice. This system has an experimental realization
in the A2-B2 disorder transition in FeAl [5]. The theoreti-
cal work has been considerably advanced more recently
[6], particularly in a numerical transfer matrix and con-
formal theoretic treatment of a planar case. In this Letter,
we report results of an exact calculation which amplifies
these points further, giving explicit expressions for one-
and two-point functions which are directly relevant but not
given in Ref. [1]. We also interpret our results using the
droplet model [7,8] which, in turn, suggests novel behavior
in three dimensions.

For systems consisting of Ising spins si � 61 placed
on sites i of a d-dimensional lattice with a surface S and a
surface magnetic field h1 applied to all sites in S, the sur-
face critical phenomenon is manifested in surface quanti-
ties, examples of which are defined as follows. If j [ S,
the surface magnetization, m1, is defined by m1 :� �sj�
(where �?� is the ensemble average). As the temperature, T ,
passes through the bulk critical temperature, Tc � Tc�d�,
in zero bulk magnetic field, m1 has leading singular be-
havior m

sing
1 � jtjb1 as t :� �T 2 Tc��Tc ! 0 defining

the surface critical exponent b1. Another surface expo-
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nent of interest is hk, describing the decay of critical pair-
spin correlations parallel to S. Thus, for both 0, r [ S,
�s0sr�T � r2�d221hk� as r ! ` at the bulk critical point
(throughout, the superscript T denotes truncation by sub-
tracting away �s0� �sr� from �s0sr�).

For a given bulk universality class, the values of the
surface exponents, b1, hk, etc., depend on the surface
universality class. In this Letter we encounter just two
surface universality classes: the ordinary transition and
the normal transition. If the spins in the bulk are coupled
ferromagnetically the ordinary transition characterizes the
case where h1 � 0 with surface couplings de-enhanced
so that the surface does not (locally) break the symmetry
of the order parameter and the surface stays disordered
whenever the bulk is disordered. On the other hand, the
normal transition occurs when h1 fi 0 which breaks the
symmetry of the order parameter and gives a magnetized
surface even when the bulk is disordered (for T . Tc, zero
bulk field). This situation changes considerably when the
bulk couplings are antiferromagnetic and the orientation of
S, relative to the lattice axes, is allowed to vary; a d � 2
version of this case is the subject of this Letter.

We consider an Ising model on a square lattice with anti-
ferromagnetic couplings (in units of kBT ) K1 (respectively,
K2) along bonds in the �0, 1� [respectively, �1, 0�] direction,
as shown in Fig. 1(a). Edges are formed by cleaving the
lattice in either the �1, 1� or �1, 0� direction; a uniform sur-
face field h1 (in units of kBT ) is applied to the surface sites
in either case. Henceforth, we refer only to the equivalent
ferromagnets obtained by reversing all the spins on one
of the sublattices (white dots, say) in Fig. 1(a) leading to
the ferromagnetic lattices shown in Fig. 1(b) for the �1, 1�
edge, with a uniform surface field, and Fig. 1(c) for the
�1, 0� edge, with a staggered surface field. These lattices
are wrapped onto a cylinder of circumference M (assumed
to be even) and height N with the edge field applied to
the bottom edge. We shall always set the bulk field to
zero. Clearly, the behavior of the one-point function, or
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FIG. 1. (a) shows the antiferromagnet with edge orientations
indicated and the equivalent ferromagnets are shown in (b) for
the �1, 1� edge, with a uniform surface field, and (c) for the �1, 0�
edge, with a staggered surface field.

spin expectation at each lattice site, will depend on the
bulk state for T , Tc�2�, since we then have two coexis-
tent pure phases with magnetization 6m�. The bulk can
take any intermediate value in �2m�, m��, selected by a
suitable choice of boundary condition at the top edge. We
determine the one-point and two-point functions and show
explicitly that the appropriate universality classes do de-
pend on the orientation of the edge as might be anticipated
by the fact that the uniform field breaks up-down symme-
try whereas the staggered field does not.

If n � �1, 0�, �1, 1� denotes the edge direction, standard
transfer matrix theory gives the results

�s1,1s11s,1� �n� � Z�n�21�1jV �n�Nsx
1 sx

11sjn� , (1)

where

j�1, 0�� � V
1�2
2 V1�h�

1� j12�, j�1, 1�� � V1�h�
1� j1� ,

(2)

and the partition functions, Z�n�, are obtained by evalu-
ating the matrix elements on the right-hand side of (1)
with both spin operators replaced by 1. Also s

a
j (a �

x, y, z) is the a-component Pauli operator acting on site j
(1 # j # M). The end state j1� (respectively, j2�) de-
notes the state where all the spins are up (respectively,
down) in the x direction and j12� is the state where the
spins are staggered (alternately up and down) in the x di-
rection with j21� being this state shifted by one lattice
spacing. The one-point function, or surface magnetiza-
tion, is given similarly by deleting s

x
1 in (1). The transfer

matrix V �1, 0� � V
1�2
2 V1V

1�2
2 , where

V1 �
MY

j�1

exp�2K�
1 sz

j �, V2 �
MY

j�1

exp�K2sx
j sx

j11� ,

(3)

with cyclic boundary conditions on the cylinder of cir-
cumference M and e22K�

1 � tanhK1. The transfer opera-
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tor V �1, 1� is not well known. For the present purpose,
the eigenvalues are not needed; the eigenvectors can be
obtained from the star-triangle relation. A prototypical
Yang-Baxter idea [9] shows that V �1, 1� commutes with
the Hamiltonian for a 1-dimensional Ising model in a
transverse field, the handling of which is straightfor-
ward. For both n, V1�h�

1� is given by V1 in (3) with
h�

1 (� 2 1
2 ln tanhh1) replacing K�

1 . The formula (1)
is appropriate for a bulk 1 magnetized state which is
selected by the upper boundary state �1j. Strictly, we
should take M ! `, followed by N ! ` to approach the
thermodynamic limit so as to select the 1 magnetized
state. The physically relevant factor in this argument is
that for T , Tc�2�, the maximum eigenvalue of V �n� is
asymptotically (but not strictly) degenerate as M ! `.
Taking N ! ` first means that only the maximum term is
included. We have evaluated (1) for finite N and M; the
prolixity of this makes publication elsewhere advisable—
in this case the full spectrum of V �1, 1� is needed [10].
The finite-M results we give below tend to the physically
correct thermodynamic limit as M ! `. Let the asymp-
totically degenerate eigenvectors be jF6�: then we have

�s1,1s1,11s� �n� � Ẑ�n�21
X

´�1,2
�F´js

x
1 sx

11sjn� . (4)

To finish setting the problem up, we note that j1� and
j12� can be obtained from the asymptotically degener-
ate eigenvectors jF6� of V �1, 0� by taking K�

1 ! 0, with
K2 . 0 and K2 , 0, respectively. In this case, the de-
generacy becomes exact and jF6� ! jF0

6� (respectively,
jF2

6�) for K2 . 0 (respectively, K2 , 0); j6� and j67�
become linear combinations of the appropriate vectors. In
the former case, the coefficients have been evaluated else-
where [11]. Analogous procedures apply in the latter case,
giving

p
2 j6� � jF0

1� 6 jF0
2� ,

p
2 j67� � jF2

1� 6 jF2
2� ,

(5)

where, for i � 0, 2,

jFi
6� � Qi

6

,pY
v.0

�cosui�v� 1 i sinui�v�Fy
2vFy

v� j0� (6)

with expiMv � 71, u0�v� [respectively, u2�v�] �
�p 1 v��2 (respectively, v�2) modp and Fv , Fy

v are
(discrete) Fourier transforms of Fermi operators fj , f

y
j

acting on sites 1 # j # M. Also, j0� is the Fv vacuum,
Qi

1 � 1 always and Q0
2 (respectively, Q2

2) � F
y
0 (re-

spectively, Fy
p ). The appropriateness of the Fy

p factor is
intuitively clear, since under the unit translation operator
T̂ , j12� ! j21� [as seen from (5) noting T̂ jF2

2� �
eip jF2

2 �]. Had we taken free boundary conditions at the
top, bringing in �0j rather than �1j at the left in (1), the
term ´ � 2 in (4) would be absent. This factor is quite
crucial in getting the surface universality class behavior
correct for the one- and two-point functions.
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Noting that j1� and j12� are eigenvectors of s
x
j , we

move the s
x
1 and s

x
11s through the appropriate opera-

tors in j�1, 0�� and j�1, 1��, getting factors exp2h�
1s

z
j for

j � 1 and j � 1 1 s [and an overall factor of �21�s for
the �1, 0� edge coming from s

x
11sj12�]. These in turn

can be expressed in terms of bilinear forms in fj and f
y
j :

exp2h�
1s

z
j � A

y
j Aj , where Aj � e2h�

1 f
y
j 1 eh�

1 fj . Thus
(4) can be evaluated by Wick’s theorem. We now describe
the salient features in the results for both edge types in turn.

(1, 0) Edge.—First consider the one-point function
m1�s� � �s11s,1�. Since the Aj are linear in the fermions,
the ´ � 1 term in (4) is evaluated as a contraction. From
translational invariance of the end states, it is clear that
there can be no s dependence in this ´ � 1 contraction
and thus, due to the overall prefactor of �21�s, this term
gives rise to an “antiferromagnetic” contribution to m1�s�.
The analogous translational argument for the ´ � 2 term
shows that, since the right state jF2

2 � changes sign under
translation, an additional eips factor comes out of the
contractions which cancels with the overall �21�s factor
leading to a “ferromagnetic” contribution to m1�s�. Its
evaluation proceeds again by Wick’s theorem, except now
we must contract both the F0 and the Fy

p , each with a dif-
ferent A-type operator. Then finally, we have to estimate
the ratio of the 2 and 1 “vacuum” expectations to get the
final result. The conclusion for the �1, 0� boundary is that

m1�s� � mf 1 �21�smaf , (7)

where mf � jtj1�2 and m
sing
af � t2 ln jtj so that the fer-

romagnetic term produces the dominant scaling behavior
corresponding to b1 � 1�2, i.e., that of the ordinary tran-
sition. However, we stress that this ferromagnetic term
would be absent when there is zero bulk magnetization
[which includes the case for T , Tc�2� with the top of the
cylinder having a free edge]; in that case, the ferromagnetic
term vanishes identically simply because the bulk state has
no projection on the 2 spectrum. Note also that the antifer-
romagnetic term, which is nontrivial for T . Tc, as well as
T , Tc, gives rise to a curious correction-to-scaling con-
tribution behaving as t2 ln jtj, which has the same form as
the leading singularity in the bulk free-energy density and
also the leading singularity of m1 for a normal surface.
Such a correction-to-scaling term is not present when the
ordinary transition is realized by having a free (h1 � 0)
boundary; here all the correction terms behave as jtjn1 1

2 ,
where n $ 1 is an integer.

The same type of analysis obtains for the two-point func-
tion for the �1, 0� edge; by careful consideration, the con-
nected two-point function can be extracted and shown to
vanish for infinite separation, as it should. For this to hap-
pen, the ´ � 2 term in (4) plays an essential role, leading
to the correct clustering property appropriate for a pure
phase. Thus we have

�s1,1s11s,1�T � Cf�s� 1 �21�sCaf�s� , (8)
where in the scaling regime, for t ! 06,

Cf�s� � tF6�ts� 1 O�jtj3�2� , (9)

Caf�s� � O�jtj3�2� with t � �j1
0 �21jtj and j

1
0 is the su-

percritical amplitude of the bulk correlation length j. The
leading part, in a scaling sense, is pure monotone in s,
which supports the point of view that, since the bulk state is
plus magnetized, this permeates to the boundary and so the
energy of typical configurations has a “weak” h1 depen-
dence because of its alternating character along the edge.
The asymptotic behavior is F6�x� � e2x�x3�2 as x ! `.
Also, F6�x� � 1�x as x ! 0, implying that hk � 1 as
for the ordinary transition. The idea that coarse graining
to the level of about j eliminates the surface field when j

is large suggests that, in the �1, 0� case, the two-point func-
tion should behave as though it is in a free edge [with the
same scaling functions F6�x�]. This is easily confirmed
by an exact calculation as given originally by McCoy and
Wu [1]. Second, the truncated two-point function in the
edge is described in the droplet model of uniaxial correla-
tions [7] by a solid-on-solid (SOS) path connecting the two
spin locations as extrema, with fluctuations controlled by
the surface tension—strictly, lattice anisotropy of the sur-
face tension outside the scaling region would require sur-
face stiffness [12]. Such a picture invites generalizations
to d � 3 with SOS lattice tubes [8] to be explained below.

(1, 1) Edge.—We now continue with the �1, 1� edge be-
havior. For t ! 06 (in the scaling region)

�s1,1s11s,1�T � tF6�ts; y� , (10)

where t � �j1
0 �21jtj, D

ord
1 � 1�2 is the surface gap ex-

ponent for the d � 2 ordinary transition, y �
p

2 h1t2D
ord
1

is the scaled surface field, and

F6�x; y� � J6�x, y�
Z `

0
du

3 e2xu A�u�f6�u, y�
B6�u, y�

1 G6�x, y� , (11)

where A�u� �
p

u�2 1 u�, f1�u, y� � �1 1 u�2,
f2�u, y� � �1 1 u 2 y�2 2 y2�1�2�2,

B6�u, y� � �1 1 u� ��1 1 u�2 1 y4 6 2y2� , (12)

and

G6�x, y� �

µ
ye2x

p

∂2 Z `

0
du1

Z `

0
du2

3
e2x�u11u2�A�u1�A�u2� �u1 2 u2�2

B6�u1, y�B6�u2, y�
. (13)

Finally, J1�x, y� � 2e2x�p�2 1 y2� and

J2�x, y� �
2�1 2 y2�Q�1 2 y�e2x�11y�22y2�1�2�

p�2 2 y2�
, (14)

where Q�?� is the Heaviside function. Thus, for T ,

Tc�2�, we see that a new dominant length scale (dependent
2543
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on h1) emerges for y , 1. This was also observed by
McCoy and Wu, but they did not give the scaling function
or offer an interpretation of this. The scaling functions,
F6�x; y�, express the full crossover from the ordinary
transition, y � 0, to the normal transition, y � `. So,
limy!0F6�x; y� � Ford

6 �x�, where Ford
6 �x� is essentially

the same as F6�x� in (9), corresponding to hk � h
ord
k � 1

(ordinary transition). In addition, F6�x; y� � y26Fnor
6 �x�

as y ! `, where Fnor
6 �x� � x24 as x ! 0 giving

hk � h
nor
k � 4 (normal transition). This ordinary-normal

crossover is analytic in y for T . Tc but is singular
at y � 1 for T , Tc. Note that this singularity in the
two-point function has no thermodynamic consequences
for the surface susceptibility obtained as a fluctuation
sum. But, as we indicate below, that part of the inverse
correlation length extracted from J2�x, y� has singular
behavior at y � 1 and gives the incremental free energy
associated with a pinning-depinning transition at y � 1.
This is best seen qualitatively (but it can be established
analytically) in the droplet picture.

Here the truncated two-point function for the �1, 1� edge
is a sum over SOS loops [7] separating regions of opposite
magnetization with the spin locations as apices. We have
loops because h1 . 0 in this application. The loop consists
of an upper and a lower path. The lower one behaves like
an interface at a wall with a binding potential supplied
by h1. Thus we have a pinning-depinning, or wetting,
scenario. The upper interface cannot cross the lower one,
and when the lower one is pinned, behaves essentially
as a free interface confined to a half-plane, and therefore
wanders away from it. These ideas reproduce the behavior
of F2�x, y� for x large.

The droplet idea can be extended to d � 3 by noting
that the natural objects which separate regions of oppo-
site magnetization are tubes [8]. In both the staggered
and uniform field case, there is an energetic binding of
the tube to the substrate where fewer, or weaker, bonds get
broken. Preliminary results can be obtained by treating
the tube as an SOS string connecting the locations of the
spins at surface sites 0 and r. The string motion decouples
into a free part parallel to the substrate plane and a per-
pendicular one which manifests pinning-depinning behav-
ior at a temperature Tp , Tc�3�; we expect Tp � Tp�h1�
for the uniform surface field, whereas Tp will be indepen-
dent of (or only weakly dependent on) h1 for the staggered
field and Tp should be orientation dependent. We find that
�s0sr�T 	 K�r�e2k1r as r ! `, where K�r� � r21�2 for
all T , Tp and K�r� � r22 for all Tp # T , Tc�3�. Fur-
thermore, if kb is the bulk inverse correlation length then
k1 � kb for all Tp # T , Tc but k1 , kb for T , Tp
[where k1 � k1�h1� for the uniform surface field case]
with k1 % kb as T % Tp in a manner similar to d � 2.
Clearly, such phenomena should be sought both experi-
2544
mentally and in Monte Carlo simulation. Generalizations
to d $ 3 are straightforward; in this case one finds that
K�r� has the behavior K�r� � r2�d22��2 for T , Tp and
K�r� � r2�d11��2 for Tp # T , Tc�d�.

In this Letter, we have analyzed the orientation depen-
dence of surface critical phenomena in two-dimensional
uniaxial antiferromagnets. Key features are the depen-
dence of surface exponents on the bulk state, the explicit
character of crossover functions between normal and ordi-
nary behavior, and the occurence of pinning-depinning and
associated h1 dependence of surface correlation lengths
and changes in the algebraic prefactors. Related pinning-
depinning phenomena are also predicted for three dimen-
sions. Also, the inverse correlation length displayed by the
surface pair correlation function has the same singular be-
havior as the incremental free energy associated with pin-
ning of an interface for d � 2, or of a polymer for d $ 3.
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