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Energy Localization in Photonic Crystals of a Purely Nonlinear Origin
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We investigate electromagnetic localization in a nonlinear photonic crystal, i.e., a structure with a
stop band in its nonlinear spectral response. Taking a one-dimensional model of degenerate two-wave
interaction we introduce the concept of parametric nonlinear-gap solitons, that is, strongly localized
two-color locked envelopes arising from interplay of two nonlinear effects, which propagate slowly. We
discuss the observable signature of these novel localized structures.

PACS numbers: 42.70.Qs, 42.65.Pc, 42.65.Tg
There is a growing interest in band gap materials or
“photonic crystals” (PCs [1]) and their 1D analogs such
as Bragg gratings [2,3]. A universal feature of periodic
media or discrete chains which exhibit stop bands (gaps)
in their linear dispersion relation, is the existence of
self-transparent gap soliton envelopes supported by the
nonlinearity [2–6]. As witnessed by excellent experimen-
tal results [7], nonlinear optics is a privileged observatory
for these phenomena. On the other hand also nonlinear
PCs with homogeneous linear properties have been
proposed [8], generalizing the concept of quasi-phase-
matching (QPM) of parametric interactions [9]. So far,
the role of QPM was investigated in relation to trapping
of nondiffractive tranverse wave packets [10]. Conversely,
the basic question we address in this Letter is whether
a nonlinear PC can sustain solitary structures, strongly
localized along the propagation direction, reminiscent
of linear-gap solitons. Based on intuition, one could
think that such a possibility is prevented by the absence
of the damping due to a low-power stop band, which
ensures the correct exponential decay along soliton
tails. On the contrary, by specifically focusing on the
example of 1D backward second-harmonic generation
(BSHG) [11–14], we predict dramatic localization
and self-transparency effects, owing to formation of
solitons due to a nonlinear stop band, i.e., nonlinear-
gap solitons (NGS). These NGS are self-induced in
a nonlinear PC which stems from BSHG, through the
unavoidable contribution of Kerr nonlinearities. Notice
that BSHG is the simplest, experimentally demonstrated
[11], prototype of parametric mixing which leads to a
nonlinear frequency gap, i.e., power-induced reflection in
an otherwise linearly transparent structure. In this respect
a BSHG reflector is the nonlinear counterpart of a linear
Bragg grating.

Self-induced gap solitons exist in discrete systems,
where they are standing kinklike excitations [15]. Our
results prove that self-induced NGS of a completely
different nature can also propagate in continuous systems.
Our fully solvable model shows that these are slowly
moving objects which exhibit a strong energy confinement
and exist also with vanishing background waves.
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Specifically, let us consider a total field E�Z,
T � �E1�Z,T � exp�ik1Z 2 iv0t� 1E2�Z,T � exp�2ik2Z 2

i2v0t�, where kl � k�lv0�, l � 1, 2, propagating in a
nonlinear x �2� grating with stepwise changes along the Z
axis. The forward- and backward-propagating envelopes
E1 and E2, at the fundamental frequency (FF) and its
second-harmonic (SH), respectively, obey the system

L1E1 1 x2�Z�E2E
�
1 e

iDkZ 1

�eX1jE2j
2 1 eS1jE1j

2�E1 � 0 ,

L2E2 1 x2�Z�E2
1 e

2iDkZ 1

�eX2jE1j
2 1 eS2jE2j

2�E2 � 0 ,

(1)

where L1 � iV21
1 ≠T 1 i≠Z , L2 � iV21

2 ≠T 2 i≠Z ,
Vl � dk�dvj

21
lv0

, l � 1, 2, are group velocities, Dk �
Dk�v0� � k2 1 2k1 is the wave vector mismatch,
and Fourier expansion of x �2� yields x2�Z� �
x̂2

P
mfi0 exp�im2pZ�L�. For a grating pitch L �

2mp�Dk�v0�, perfect BSHG phase matching is achieved
at v0 with a suitable integer m, and Eqs. (1) are conve-
niently recast in a dimensionless form as

i�≠t 1 ≠z�u1 1 u2u
�
1 1 �X 0

1ju2j
2 1 S01ju1j

2�u1 � 0 ,

i�y21≠t 2 ≠z�u2 1
u2

1

2
1 �X 0

2ju1j
2 1 S02ju2j

2�u2 � 0 ,

(2)

where ul �
p

2El�
p
lIr , t � V1T�Znl , z � Z�Znl ,

Znl � 1��x̂2
p
Ir � being a nonlinear length scale associ-

ated with a reference intensity Ir , and y � V2�V1. The
normalized cubic coefficients S0l � l�eSl 1 Ŝl�

p
Ir��2x̂2�

and X 0
l � �eXl 1 X̂l�

p
Ir��lx̂2�, with l � 1, 2 account

for the effective corrections Ŝl , X̂l to the intrinsic (i.e.,
material) Kerr coefficients eSl , eXl , which arise unavoidably
from the quadratic grating [10].

Neglecting for the time being the cubic terms in Eqs. (2),
pure BSHG is responsible of the appearance of an intrinsi-
cally nonlinear stop band. This is visible in Fig. 1, which
shows the output intensity fraction T of a continuous wave
(cw) detuned excitation u1�0, t� � exp�2idvt� at FF
versus mismatch dk0 � 2dv�1 1 y��y (i.e., first order
© 2000 The American Physical Society
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FIG. 1. Transmitted intensity fraction T versus mismatch
dk0 � 2dv�1 1 y��y in a BSHG reflector of length L in
the quasilinear regime (zL � L�Znl � 0.5, dashed curve),
intermediate (zL � 2, thick solid curve), and high fluences
(zL � 10, thin solid curve).

expansion of k2 1 2k1 around v0) for a fixed BSHG
reflector length Z � L and increasing fluences (larger
values of zL � L�Znl). At relatively low fluences, the
transmission T is high and spectrally flat (see dashed
line), whereas higher powers give rise to enhanced back
conversion to SH beam at frequency 2dv, which in turn
results into a bistable response with a stop band centered
at phase matching (see thin solid curve in Fig. 1).

Our goal is to show that the unavoidable cubic con-
tributions bleach the nonlinear reflection, inducing self-
transparency effects mediated by strongly localized
envelopes (solitons) slowly moving at normalized velocity
V . To this end, we seek two-parameter (V , dv) traveling
waves of the form

u1 �
p

�1 2 V � �1 1 V�y� u�z � exp�idv�z 2 t�� ,

u2 � �1 2 V �w�z � exp�i2dv�z 2 t�� ,

where z � z 2 Vt, and u,w obey the system

2i �u � wu� 1 X1jwj
2u 1 S1juj

2u ,

i �w � dkw 1
u2

2
1 X2juj

2w 1 S2jwj
2w ,

(3)

formally identical to the stationary version of Eqs. (2) once
we define the rescaled coefficients X1,2 � X 0

1,2�1 2 V �,
S1 � S01�1 1 V�y�, and S2 � S02�1 2 V �2��1 1 V�y�.
The dot stands for d�dz , and dk �

2�111�y�dv

�11V�y� is the wave
vector mismatch in the soliton frame. Equations (3) can be
reduced to an integrable Hamiltonian oscillator by exploit-
ing the conservation of photon flux (i.e., Poynting vector)
P �

juj2

2 2 jwj2. In terms of the variables x � jwj cosf,
y � jwj sinf, with f � Arg�w� 2 2Arg�u�, we obtain

�x �
≠H
≠y

; �y � 2
≠H
≠x

,

H � x�x2 1 y2 1 P� 1
D

2
�x2 1 y2�

1
s

4
�x2 1 y2�2.

(4)
Here both the overall detuning D � dk 1 2�X2 1 2S1�P,
and the dephasing term proportional to s �
2�X2 1 2S1� 1 2X1 1 S2 account for Kerr-induced
local modifications of phase matching. Equations (4)
can be further reduced, in terms of SH intensity h�z � �
x2 1 y2 � jw�z �j2, to a decoupled equation ḧ �
2≠U�≠h for the 1D motion of an ideal particle with en-
ergyE � �h2�2 1 U�h� in a potential wellU�h� [16]. We
obtain 2�U�h� 2 E� �

s2

4 h4 1 �sD 2 4�h3 1 �D2 2

8P 1 2H0s�h2 2 4�P2 1 H0D�h 1 4H2
0 where H0

is a particular value of the Hamiltonian (calculated
on either input or output section). Solitons corre-
spond to homoclinic loops emanating from the unstable
eigenmodes h � he, f � fe (i.e., ≠U�≠hjhe � 0) of
Eqs. (4). In order to establish their existence, we have
performed a complete bifurcation analysis of Eqs. (4).
First, if we drop cubic terms (D � dk, s � 0), two
phase-locked eigenmodes (i.e., fe � 0 for dk , 0,
and fe � p for dk . 0) appear above the bifurcation
point dk2 � 12P due to a saddle-node bifurcation which
preserves the symmetry dk ! 2dk. In this case, the
potential U�h� is cubic and admits bound (i.e., periodic)
or unbound field evolutions separated by the following
homoclinic loop

jw�z �j2 � h�z � � he 1 k1�tanh2�
p

k1 z � 2 1� , (5)

where 4k1 �
p

dk4 2 48Hedk2 16dk2P1 16P2, He �
H�he,fe�, and he � �dk2 2 6P1

p
dk2�dk2 2 12P���

18 is the asymptotic value. Equation (5) describes
moving parametric dark solitons: the intensity pro-
files jw�z �j2 and ju�z �j2 � 2�P 1 jw�z �j2� show a dip
at z � 0 accompanied by a phase kink f�z � [with
f�1`� 2 f�2`� � 2kp , k integer]. Importantly, from
this analysis we draw the conclusion that no energy
localization occurs in pure BSHG.

However, cubic terms in Eqs. (4) break the symmetry
of the system, qualitatively altering the bifurcation pic-
ture with the birth of a third phase-locked eigenmode
from a secondary saddle node. In this case the poten-
tial U�h� is a double well and homoclinic orbits become
double loops separating different domains of bound mo-
tion in phase space. In the parameter plane D 2 P (with-
out loss of generality we set s � 1, equivalent to rescale
�h,P� ! s2�h,P�, D ! sD, z ! z�s) these homo-
clinic loops exist in the shaded regions B and C of Fig. 2.
Although the separatrices differ qualitatively in the two
existence domains (see insets in Fig. 2), in both cases the
loop encircling the origin describes only a deformation of
the dark-dark soliton (5). Conversely, the outer loops rep-
resent NGS with strongly localized bright envelopes on a
cw background (pedestal)

jw�z �j2 �
he 1 k2 sech�

p
k1 z �

1 1 k3 sech�
p

k1 z �
;

ju�z �j2 � 2�jwj2 1 P� ,
(6)
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FIG. 2. Existence map of localized envelopes of Eqs. (4) in
the parameter plane D 2 P (s � 1, see text). Insets B and
C display homoclinic trajectories in the phase plane �x, y�, and
represent localized waves in the corresponding shaded regions.
In A (blank region) no solitary waves exist.

with 4k1 � �h1 2 h2� �h2 2 h3�, k2 � �h1h2 1 h2h3 2

2h1h3���h1 2 h3�, and k3 � �2h2 2 h1 2 h3���h1 2 h3�
expressed as functions of the roots h1 , he � h2 , h3
of the equation E 2 U�h� � 0. The localized wave (6) is
always accompanied by a phase kink with a cumbersome
expression which can be easily derived from Eqs. (3).
This unexpected result can have a physical justification:
the envelopes are self-confined by the action of the back-
ground waves which, sustaining the nonlinear stop band,
favor strong reflection of the escaping photons towards
the envelope center. In the center, in turn, reflection is
bleached by the high local intensity, which locally draws
the mixing interaction out of phase matching.

The NGS family can be characterized in terms of
pedestal he and peak jw�z � 0�j2 intensities. Notewor-
thy, the energy of NGS is highly localized in a wide
range of negative detunings D where the pedestal to peak
intensity ratio Rp � he�jw�z � 0�j2 remains small [see
Fig. 3(a)]. Remarkably, in the symmetric case P � 0, the
pedestal vanishes at phase matching D � dk � 0 (i.e.,
nonlinear-gap center; see Fig. 1). In this case, despite the
fact that the saddle and homoclinic orbit disappear (the
linearization around the origin yields a doubly degenerate
zero eigenvalue), the following localized NGS still exist

u �
p

2A�z � exp�iauc�z �� ;

w � 2A�z � exp�iawc�z �� ,
(7)

which has a Lorentzian (i.e., nonhyperbolic) bright-
bright intensity profile A2�z � � �4�s�2�1 1 �4z�s�2�21,
and a phase kink c�z � � tan21��4z�s�� of amplitude
au � 21 1

4
s �X1 1 2S1� and aw � 1 2

4
s �2X2 1 S2�

[in this case f�1`� 2 f�2`� � p; see also Fig. 4(b)].
We also emphasize that these parametric NGS are slow

waves, i.e., 2y , V , 1, meaning that they can travel in
the forward or backward directions with physical velocity
smaller than V1 or V2, respectively. The higher the ve-
locity in the forward (backward) direction, the stronger
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FIG. 3. Features of NGS: (a) Pedestal to peak ratio Rp versus
detuning D for P � 0 (thick solid), P � 0.5 (dashed), P � 3
(thin solid). (b) Fraction of FF intensity RFF versus V for
P � 0 and y � 1 (thick solid), y � 0.5 (thin solid), y � 2
(dashed).

the FF (SH) soliton component. This is evident from
Fig. 3(b), where we plot the FF intensity fraction RFF �
ju1�0�j2��ju1�0�j2 1 2ju2�0�j2� against soliton velocity V ,
for different values of y � V2�V1.

Having established the existence of localized waves in
a nonlinear PC, one might wonder about their stability.
A rigorous theory is challenging and cannot be framed in
the usual gap stability problem [17] essentially because in
general NGS carry an infinite energy (mass). However,
from numerical integration of Eqs. (2), we could ascertain
stable propagation in a large portion of the existence
domain. This includes stability of the cw background
against Hopf bifurcations [12] and modulational insta-
bility [when group-velocity dispersions d2k�dv2jlv0 ,
l � 1, 2 are included in Eqs. (1) [18] ], as it will be
reported elsewhere in detail. More importantly, we
discuss here the measurable signatures of NGS in a finite
nonlinear PC slab 0 , z , zL. We choose the boundary
condition u2�zL, t� � 0 consistently with the unidirec-
tional illumination u1�0, t� �

p
I1�t� at FF, and set for

definiteness S01,2 � X 0
1,2 � 0.1 in Eqs. (2). First, the

role of localized states can be gathered from the cw
(i.e., ≠t � 0, I1 � constant) input-output response at FF,
namely ju1�zL�j2 versus I1. In Fig. 4 we compare the
calculated responses with and without the Kerr contribu-
tions. As apparent, the strong reflectivity of pure BSHG at
high input fluences is responsible for a dramatic limiting
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FIG. 4. (a) Transmitted ju1�zL�j2 versus cw input FF intensity
I1 � ju1�z � 0�j2 at phase matching, with (solid) and without
(dashed) Kerr effect. (b) Stationary localized intensity profiles
at FF (thick solid) and SH (dashed), and phase kink f�z � (thin
solid), excited at the high-power transparency point Q in (a),
within the structure 0 , z , zL � 10.
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FIG. 5. Pulsed excitation of a slow NGS: (a) temporal profiles
of input (dashed) and output intensities without (thin solid) and
with (thick solid line) the Kerr contribution; in the latter case the
two-hump feature is attributed to weak down conversion from
SH to FF which occurs close to the nonlinear-linear boundary at
zL � 10 where u2�zL� � 0. (b) Temporal profiles of SH (solid
line) and FF intensities (dashes) in the middle of the structure
(z � 5).

effect, in turn inhibited by the Kerr effect. The self-
transparent state [point Q in Fig. 4(a)] is associated with
the excitation of a zero-velocity localized wave, with FF
and SH intensity profiles as shown in Fig. 4(b). Similar
results are obtained out of phase matching.

Furthermore, we performed numerical experiments to
assess the excitability of bright NGS by means of FF
pulses. Figure 5 displays a typical result, corresponding to
illumination with a Lorentzian chirped pulse [dashed line
in Fig. 5(a)] at frequency dv � 0 (nonlinear stop band
center dk � 0; see Fig. 1). In Fig. 5(a) we compare the
FF temporal profiles at the output z � zL in the absence
and in the presence of the optical Kerr effect, respectively.
While in the former case most of the incident power is
up converted to backpropagating SH and only a weak lin-
ear FF wave emerges traveling at its linear group velocity
(V � 1), the Kerr effect dramatically enhances the trans-
mission while inducing a considerable group delay due to
the formation of a slow (V � 0.5) localized pulse. The
formation of a NGS is apparent by looking at the snapshot
of the two envelope profiles inside the structure (z � 5),
as shown in Fig. 5(b). The SH beam is locally generated
in the backward direction but its envelope, being locked to
the FF component, travels forward consistently with soli-
ton features.

Finally, we stress that the reference intensity corre-
sponding to the given value S01,2 � X 0

1,2 � 0.1 (Fig. 5)
scales as Ir � 1022�2x̂2�eS1�2 (neglecting QPM correc-
tion to x �3�). For instance, using an order m � 10 grat-
ing [11], we expect Ir in the range of tens of GW�cm2

in LiNbO3, with a characteristic time scale T0 � Znl�V1
of a few ps and L � zLZnl � 1 mm. Such numbers are
encouraging for experimental feasibility, but proper engi-
neering of periodic structures [10] and emerging grating
technologies [19] allow for significant improvements.
In summary, we have shown that self-induced localized
envelopes can propagate in a PC with a nonlinear stop
band. Both stationary and slowly moving NGS have a
relevant impact on light confinement and self-transparency.
These results can be readily generalized to nondegenerate
mixing [14] and 1D or 2D [8] nonlinear PCs of different
origins. Applications to optical parametric oscillators and
cavityless soliton lasers in gain media [13] can be also
envisaged.
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