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Spectral Statistics of Chaotic Systems with a Pointlike Scatterer
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The statistical properties of a Hamiltonian H0 perturbed by a localized scatterer are considered. We
prove that if H0 describes a bounded chaotic motion, the universal part of the spectral statistics is not
changed by the perturbation. This is done first within the random matrix model. Then it is shown by
semiclassical techniques that the result is due to a cancellation between diagonal diffractive and off-
diagonal periodic-diffractive contributions. The compensation is a very general phenomenon encoding
the semiclassical content of the optical theorem.

PACS numbers: 05.45.Mt, 03.65.Sq, 73.23.–b
In quantum systems, the chaotic or disordered nature of
the classical motion is reflected in the statistical proper-
ties of the high lying eigenvalues and eigenvectors. For
instance, the spectral statistics of ballistic cavities are uni-
versal for energy ranges that are small compared to the
inverse time of flight through the system. These univer-
sal properties are well described by random matrix theory
(RMT) [1,2].

Consider a perturbation imposed to a chaotic system.
We are interested in the quantum mechanical effects of
a particular class of perturbations that are nonclassical,
in the sense that almost all the classical trajectories are
insensitive to it. If the unperturbed motion is described
by a Hamiltonian H0 acting in an N-dimensional Hilbert
space, we consider Hamiltonians of the form

H � H0 1 lNjy� �yj , (1)

where jy� is a fixed vector. N is included in the pertur-
bation for future convenience. The eigenvalues �vi� of H
satisfy the equationX

k

jykj
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v 2 ek
�
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lN

, (2)

with �ek� the eigenvalues of H0 and yk � �wk jy� the am-
plitudes of jy� in the eigenbasis of H0.

Rank-one perturbations like in Eqs. (1) and (2) appear
in several contexts. The most common one occurs when
a local short-range impurity or point scatterer is added
to the system [3]. The physical consequences of such
a perturbation were studied for Fermi gases [4,5], in the
context of RMT [6] and for ballistic motion of particles
in regular [7] and chaotic [8] cavities. Another context
is the physics of many body problems, where rank-one
separable perturbations were considered as a simplified
form of residual interaction between the particles in a mean
field approach [9]. It is the simplest model leading to
collective excitations of the many body system.

A local perturbation is purely wave mechanical. For a
system with f degrees of freedom, it represents a modi-
fication of the dynamics in a volume ~�2p h̄�f in phase
space, which tends to zero in the semiclassical limit. For
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example, the addition of a point scatterer in a ballistic cav-
ity leaves invariant the classical motion while at the quan-
tum level it induces wave effects such as diffraction. The
modifications of the eigenvalues produced by the perturba-
tion are described by Eq. (2). The statistical properties of
the perturbed spectrum when the unperturbed system H0
is a regular integrable rectangular billiard were studied by
several authors (see, e.g., Refs. [7,10,11]). It was demon-
strated that a short range repulsion between the eigenval-
ues, different from RMT, is induced by the perturbation,
thus considerably modifying the initial Poisson distribu-
tion. More recently, Sieber [8] has studied, using semi-
classical techniques, the modifications by a point scatterer
of the spectral statistics of chaotic systems. He showed
that diffractive orbits produce finite contributions which
may induce deviations with respect to the random matrix
model. Whether this deviation really exists for chaotic sys-
tems, or on the contrary if there are other (nondiagonal)
semiclassical contributions that cancel the purely diffrac-
tive terms is the question we answer here.

We prove by two different approaches, namely, a purely
statistical model and a semiclassical calculation, that a lo-
cal perturbation produces no deviations with respect to
RMT. In the first place, assuming that the unperturbed
eigenvalues and eigenvector components in Eq. (2) are dis-
tributed according to RMT, i.e., their joint probability den-
sities are given by [1,2]

P��ek�� ~
Y
i.j

jei 2 ejj
b , (3)

and

P��yk�� �
Y

i

µ
bN
2p

∂12b�2

exp�2bNjyij
2�2� , (4)

we show that the joint probability density for the perturbed
eigenvalues is exactly the same as the distribution of the
unperturbed ones,

P��vk�� ~
Y
i.j

jvi 2 vjj
b . (5)

Here, b � 1 (respectively, 2) for systems with (respec-
tively, without) time-reversal symmetry. In the second
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place, and to complete the analysis, a semiclassical cal-
culation of the spectral form factor is considered. The
latter is written as a double sum over all the periodic
and diffractive orbits of the system. The diffractive or-
bits are closed trajectories that hit the scatterer. In Ref. [8]
the diagonal contribution of the diffractive orbits was ob-
tained [cf. Eq. (14) below]. We compute the off-diagonal
contribution coming from the interference of periodic and
diffractive orbits, and find that this contribution exactly
cancels the diagonal diffractive term. We thus recover the
statistics of RMT. The basic physical ingredient responsi-
ble for this cancellation is the unitarity of quantum scatter-
ing processes, i.e., conservation of the flux scattered by the
impurity. Although our semiclassical result is less general
than Eq. (5)— it is valid only for the short-time behavior of
a two-point function— it applies to a wide class of diffrac-
tive systems whose Hamiltonian cannot always be written
in the form (1).

In chaotic and disordered systems the local universal
fluctuations of the spectrum are described by the Jacobian
(3). We ignore here problems related to the confinement
of the eigenvalues, which are of minor importance for our
purposes. The first ingredient of the proof of Eq. (5) is
the joint distribution function of both the old and new
eigenvalues, obtained in Ref. [6],

P��ei�, �vj�� ~

Q
i.j�ei 2 ej� �vi 2 vj�Q

i,j jei 2 vjj12b�2 e2r
P

i
�vi2ei�,

with r � b�2l. We restrict for simplicity to l . 0 (l ,

0 is treated in the same manner). Equation (2) imposes the
restrictions ei # vi # ei11 (trapping). The distribution
for the perturbed eigenvalues, vi , is then defined as
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Z v1
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de1
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with
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and F�e� �
Q

j je 2 vjj
12b�2. Expressing the last prod-

uct in W as a Vandermonde determinant, and integrating
the latter term by term we arrive at

W�b, r� � det�I �i21�
j 	i,j�1,...,N , (7)

where I
�i�
j � ≠i

rIj is the ith derivative with respect to r of

Ij � I
�0�
j �

Z vj

vj21

erede

F�e�
. (8)

For j � 1, vj21 � 2`.
It is straightforward to check that the Ij’s satisfy, for any

j, the following differential equation [12]:
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Ij � 0 . (9)

This differential equation allows one to write

I
�N�
j �

N21X
i�0

aiI
�i�
j ,

with some coefficients ai . W�b, r� as defined in Eq. (7)
is the Wronskian of this equation. It then follows that

≠rW � aN21W , (10)

with aN21 �
P

i vi 2 bN�2r. Integration of Eq. (10)
leads to

W�b, r� �
W0

rbN�2 exp

√
r

X
i
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!
.

When this result is replaced in Eq. (6) one gets

P��vi�� ~ W0

Y
i.j

�vi 2 vj� . (11)

W0 is an integration factor that does not depend on r. We
compute it from the asymptotic behavior of I

�i�
j when r !

`. In this limit the integral in Eq. (8) may be evaluated
explicitly,

lim
r!`

Ij ~
ervj

rb�2
Q

ifij jvi 2 vjj12b�2 .

To leading order I
�i�
j � v

i
jIj . Inserting this result in

Eq. (7) one gets

W0 ~
Y
i.j

jvi 2 vjj
b

�vi 2 vj�
.

From this equation and Eq. (11) we recover the random
matrix distribution function Eq. (5).

A related problem treated previously considers a chaotic
system coupled to the environment through a one-channel
antenna [13]. The model is equivalent to Eq. (2) but with
imaginary l. For l ! ` the imaginary part of the per-
turbed energies is small and Eq. (5) is obtained. Our
method, which takes explicit care of the trapping problem,
allows one to prove this result for arbitrary l.

In real physical systems, agreement with random matrix
theory is observed in a limited range. This universal be-
havior concerns correlations over energy ranges that are
small compared to h�Tmin, with Tmin the typical period
of the shortest periodic orbit. The above random matrix
calculation establishes that the universal part of the spec-
trum is not changed by the presence of the scatterer. On
the other hand, the nonuniversal behavior of the correla-
tion functions occurring at scales of the order of, or larger
than, h�Tmin are modified by the scattering center, since
new diffractive orbits are introduced [14,15].

Let us now turn to a semiclassical treatment of the spec-
tral correlations. These are based on trace formula ex-
pansions of the density of states d�v� �

P
k d�v 2 vk�,
2487



VOLUME 85, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 18 SEPTEMBER 2000
written as a sum of smoothed plus oscillatory terms d �
d̄ 1 dosc. We characterize the correlations by the spectral
form factor defined as

K�t� �
Z `

2`

dh

d̄

ø
dosc

µ
E 1

h

2

∂
dosc

µ
E 2

h

2

∂¿
3 exp�2pihtd̄� . (12)

The average indicated by brackets is taken over an energy
window containing many quantum levels but whose size is
small compared to E. We again consider a fully chaotic
system with a pointlike scatterer. In the geometrical theory
of diffraction dosc � dosc

p 1 dosc
d , where dosc

p and dosc
d are

expressed as interferent sums over periodic and diffractive
orbits, respectively [14,15],

dosc
p,d�E� �

X
p,d

Ap,d exp

µ
i

Sp,d�E�
h̄

2 i
p

2
mp,d

∂
, (13)

with

Ap �
Tp

2p h̄j det�Mp 2 1�j1�2 ,

Ad �
TdD � �n, �n0�e2ip� f11��4j detNj1�2

4p h̄k�2p h̄�� f21��2 .

Sp,d�E� is the action of the periodic (respectively,
diffractive) orbits, Tp,d denotes their period, Mp is the
monodromy matrix of the periodic orbit, N is the matrix
Nij � ≠2Sd�≠yi≠yj (where �y are coordinates orthogonal
to the diffractive trajectory), and m are the Maslov
indices. D � �n, �n0� is the scattering amplitude of the scat-
tering center located at �x0 with incoming �n and outgoing
�n0 directions, defined in terms of the perturbed (G) and
unperturbed (G0) Green’s functions by the relation

G� �x, �x0� � G0� �x, �x0� 1
h̄2

2m
G0� �x, �x0�D � �n, �n0�G0� �x0, �x0� .

Using the properties of the periodic orbits of chaotic
systems, the diagonal contribution to dosc

p in Eq. (12) gives
the short-time random matrix result Kp�t� � �2�b�t [16].
The one scattering contribution of the diffractive orbits in
the same approximation is [8]

Kd�t� �
t2

8bp2

µ
k

2p

∂2f24

s , (14)

with k the modulus of the wave vector at the impurity and
s its total cross section,

s �
Z

jD � �n, �n0�j2dV dV0 (15)

(dV is the solid angle element). For simplicity, we restrict
the calculations to one scattering event (multiple scattering
may be considered likewise).

Our purpose is to compute the off-diagonal cross term
coming from the product of dosc

p and dosc
d in Eq. (12). The

semiclassical expression for this contribution is
2488
Kpd�t� �
2p h̄

d̄

* X
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ApA�
d exp�i�Sp 2 Sd��h̄	

3 d

µ
T 2

Tp 1 Td

2

∂
1 c.c.

+
. (16)

After energy smoothing, Kpd has significant contributions
only from orbits with close actions Sp 
 Sd (having there-
fore approximately the same period). Pairs of orbits sat-
isfying this condition may be constructed by considering
the neighborhood of the forward scattering orbits. To each
periodic orbit passing nearby the scatterer O we associate
an “almost periodic” diffractive orbit that is similar to the
periodic orbit but comes back to O with a slightly differ-
ent momentum. In Eq. (16) the double sum now involves
all the possible pairs of trajectories constructed this way.
Consider a surface of section that includes O and is per-
pendicular to the momentum of the periodic orbit when it
comes nearby to O . Let coordinates measured from O and
momenta in the plane be denoted by � �q, �p�. Consider all
the periodic orbits of period T that cut the section through
a differential element df21qdf21p located at a distance �q
from O . The difference of action between these periodic
orbits and the diffractive orbits associated to them as men-
tioned above is

Sp 2 Sd � 2�1�2�Qijqiqj , (17)

with

Qij � ≠2S�≠qi≠qj 1 ≠2S�≠q0
i≠qj 1 ≠2S�≠qi≠q0

j

1 ≠2S�≠q0
i≠q0

j ,

and �q ( �q0) are initial (respectively, final) coordinates on the
surface of section. Moreover, one can show that

j detQj � j det�Mp 2 1� detN j cos2u , (18)

where u is the angle between the normal to the surface of
section and the momentum of the diffractive orbit.

By generalizing arguments used in the derivation of the
Hannay–Ozorio de Almeida sum rule [17] one can prove
the following sum rule:X

p

d�T 2 Tp�x� �qp , �pp�
j det�Mp 2 1�j

�

R
df21q df21p x� �q, �p�

S
,

(19)

where x� �q, �p� is a test function defined on the surface of
section and � �qp , �pp� are the coordinates of the points at
which the periodic orbit p crosses the surface of section.
S �

R
dfx dfp d���E 2 H�x, p���� is the total phase-space

volume at energy E. From Eq. (16), using Eqs. (17) and
(19), we have

Kpd �
d̄t2eip� f11��4

bk�2p h̄�� f23��2S

Z q
j det�Mp 2 1�j j detNj

3 D �� �n, �n�e2�i�2 h̄�Qijqiqj df21q df21p 1 c.c.

Integrating the quadratic form in the exponent, taking
into account Eq. (18), using the semiclassical density of
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states d̄ � S��2p h̄�f , and the fact that the differential
element for the momenta may be written df21p �
�h̄k�f21 cosudV, one obtains the final expression:

Kpd�t� �
t2

2pb

µ
k

2p

∂f22 Z
i�D �� �n, �n�

2 D � �n, �n�	 dV . (20)

This is the result for the cross-term contribution. Note
that it depends only on D � �n, �n�; this happens because
interferent terms between periodic and diffractive orbits
can be large only in the forward direction.

The connection with Eq. (14) is made through a general
relation valid for the elastic scattering on a finite range po-
tential. The conservation of the flux scattered by the scat-
tering center imposes a relation between the imaginary part
of the scattering amplitude and the scattering cross section.
This is the well-known optical theorem [18], which in f
dimensions takes the form

i�D �� �n, �n� 2 D � �n, �n�	 � 2
1

4p

µ
k

2p

∂f22

3
Z

jD � �n, �n0�j2 dV0.

Combining this relation with Eq. (20) one gets our final
result:

Kpd�t� � 2Kd�t� . (21)

The interference between periodic and diffractive orbits
exactly cancels the diagonal contribution of the diffractive
orbits, Eq. (14). We recover from semiclassical methods,
at least for a two-point function and short times, the RMT
result.

The two basic elements producing the cancellation are
the sum rule (19) and the optical theorem. Only the former
is characteristic of chaotic systems, the latter being very
general. The present semiclassical results may be extended
by similar methods to multiple scattering events. In a wider
context, it should be mentioned that this is one of the rare
cases in which a calculation of off-diagonal contributions
(whose role is essential in producing the correct result) is
done explicitly for chaotic systems.

We have concentrated on the fluctuation properties of
eigenvalues of chaotic systems, and have demonstrated that
they are unchanged by a local perturbation. This applies to
high lying states, where the statistical hypotheses hold. On
the opposite extreme, a local perturbation may lead to im-
portant modifications of the properties of the ground state
of the system. Take, for example, a negative l. According
to Eq. (2), each perturbed eigenvalue is trapped by two un-
perturbed ones, except the ground state. The energy of the
ground state may diminish arbitrarily with increasing jlj
and, as can easily be shown, the associated wave function
becomes more and more localized at the impurity. In our
considerations we have ignored the presence of this “col-
lective” mode.
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