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Observation of Resonance Trapping in an Open Microwave Cavity
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The coupling of a quantum mechanical system to open decay channels has been theoretically studied in
numerous works, mainly in the context of nuclear physics but also in atomic, molecular, and mesoscopic
physics. Theory predicts that with increasing coupling strength to the channels the resonance widths
of all states should first increase but finally decrease again for most of the states. In this Letter, the
first direct experimental verification of this effect, known as resonance trapping, is presented. In the
experiment a microwave Sinai cavity with an attached waveguide with variable slit width was used.

PACS numbers: 05.45.—a, 03.65.Nk, 84.40.Az, 85.30.Vw

For more than ten years, interference phenomena in
open quantum systems have been studied theoretically in
the framework of different models. Common to all these
studies is the appearance of different time scales as soon
as the resonance states start to overlap (see [1] and the
recent papers [2] with references therein). Some of the
states align with the decay channels and become short
lived, while the remaining ones decouple a great deal
from the continuum and become long lived (trapped).
Because of this phenomenon, the number of relevant
states will, in the short-time scale, be reduced while
the system as a whole becomes dynamically stabilized.
The phenomenologically introduced doorway states in
nuclear physics provide an example for the alignment of
the short-lived states with the channels [3]. Calculations
for microwave resonators showed that the trapped reso-
nance states can be identified in the time-delay function
and that short-lived collective modes are formed at large
openings of the resonator [4]. Resonance narrowing is
inherent also in the Fano formalism [5]. Similar effects
have been found in the linewidths in a semiconductor
microcavity with variable strength of normal-mode
coupling [6]. In spite of the many theoretical studies,
the effect of resonance trapping has not yet been verified
unambigously in an experiment. For a clear experimen-
tal demonstration of the trapping effect, the coupling
strength to the decay channels should be tunable, which
was not possible in all above mentioned experiments.

The mechanism of resonance trapping can be illustrated
best on the basis of a schematical model. In an open
quantum system the resonance states are allowed to decay.
The Hamilton operator is non-Hermitian,

H =Hy — iavvt, (1)

Here FH, describes the N discrete states of the closed
quantum system, which is coupled to K decay channels by
the N X K matrix V. H, and VV1 are Hermitian and « is
areal parameter for the total coupling strength between the
closed system and the channels. The complex eigenvalues
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Er = Egr — 5Tg of H give the energy positions Eg and
widths I'r of the resonance states. Studies on the basis
of this model were performed by different groups with
different assumptions on the properties of FHy and V; see,
e.g., [7-9]. The Hamiltonian H, and the elements of V
can be given by different statistical ensembles describing
chaotic or regular motion. In all cases, the results show
clearly the formation of different time scales due to the
anti-Hermitian part of 7 . At a certain critical value of the
coupling parameter «, the widths of N — K states start to
decrease with increasing o and approach zero with o — =
while the widths of K states increase.

The widths of the states of realistic systems show a
more complicated behavior than described in the statistical
model. The widths of the long-lived states of molecules
saturate with increasing coupling strength to the contin-
uum, but do not approach zero [10]. A saturation of the
widths of the trapped states occurs, however, also in the
calculations with the schematical model when it is im-
proved by considering different coupling strengths for the
different decay channels [11]. This improvement, as well
as the introduction of a complex coupling parameter in-
stead of the real «, are justified since they follow from
formally rewriting the Schrodinger equation in the function
space of both discrete and scattering states [12]. Similar
results are obtained for nuclei [12] and for open microwave
cavities [4]. On the basis of this result it is possible to
clarify another problem discussed for resonance states in
molecules at high level density [10]: The fundamental
quantum mechanical relation between the average width
of the states and the average lifetime is violated when all
resonance states are considered in the averaging procedure.
The mechanism of resonance trapping makes, however, the
averaging procedure meaningful only for either the long-
lived or the short-lived states. Performing the average over
the trapped states only, the relation between the average
width and the average lifetime is recovered.

While I'y — 0 with @ — o0 is a necessary condition for
trapped states in the schematical model with the Hamilto-
nian (1), the calculations for realistic systems show that the
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widths of the trapped states may decrease, stop to increase,
and even slowly increase with increasing coupling strength
to the continuum. This behavior may lead to such an inter-
esting effect as population trapping resulting from the cou-
pling of two states of an atom by means of a strong laser
field [13]. The interplay between the direct interaction of
two states and the real and imaginary parts of their interac-
tion via the continuum causes unexpected and sometimes
contraintuitive effects. In any case, the local processes be-
tween individual resonances are of central importance for
the properties of the system.

Let us sketch the main ingredients of the trapping
mechanism on the basis of calculations for two neigh-
bored resonances. For N = 2, K = 1, and « replaced by
the complex value ae’?, the Hamiltonian (1) reads

cos’ ¢

CoSg sing sin®¢

H, = ((1) _01> - 2iae’ﬂ< e smg0>’

2

where ¢ characterizes the relative coupling strength. In
Fig. 1, the widths I'g /2 and eigenvalues of the two reso-
nances are shown as a function of « for 8 = 7 /18 and
¢ = /5. For small «, the widths of both states increase
with «. Thereafter the two states attract each other in en-
ergy and their widths bifurcate: The width of one state
starts to decrease with increasing « while the width of the
other one increases more strongly. At still larger «, the
broad resonance gets shifted towards lower energies due
to 8 # 0.

The goal of this paper is to present an experimental veri-
fication of the effect of resonance trapping in a microwave
cavity by considering the local interactions between in-
dividual resonances. The coupling of the discrete states
of the cavity to an attached waveguide makes the system
open.

The measuring technique is described elsewhere [14].
Here we note only that for flat cavities the electromag-
netic spectrum is equivalent to the quantum mechanical
spectrum of the corresponding system, as long as one does
not surpass the frequency vy.x = ¢/2h, where h is the

1 1
10 10
b
@ .. ®
S0 T 1Yo
— R " ..... Te.. ~ g H
ot RERT :
107" 10° -1.0 -05 0.0 05 1.0

a Er

FIG. 1. Energy Ex and width I'x/2 for two resonances in
the schematical model Eq. (2). (a) I'r/2 versus the coupling
strength . (b) Trajectories of Ex — iI'z/2 as a function of «.
The latter plot is called the eigenvalue picture.

height of the cavity. The quantum mechanical energy E
corresponds to the square of the wave number k. For the
measurement we used a quartered Sinai billiard with an
attached waveguide (see Fig. 2). The actual form of the
cavity is of little importance since resonance trapping is
expected to take place in chaotic as well as in regular bil-
liards [4].

The frequency range of the waveguide is 8.2 to
12.5 GHz (i.e., E is between 2.95 and 6.85 cm 2).
Between the two thresholds at E = 1.83 cm 2 and
7.33 cm™? only one mode can propagate through the
waveguide. The microwaves are coupled into the system
through an antenna at the end of the waveguide. They
enter the billiard through a slit, the opening of which
can be varied. The coupling matrix elements V, Eq. (1),
are related to the width of the opening. The exact ex-
pression for this relation is not known for our situation
with a limited number of resonances. We performed
102 measurements of the complex reflection coefficient
R(E) for different openings d from 3 to 23.2 mm in steps
of 0.2 mm. Because of the finite length of the waveguide
with reflecting end there are also broad channel reso-
nances in the measured R(E). This, together with the fact
that a part of the incoming flux gets absorbed in the walls
of the resonator, complicates the data analysis somewhat.

In Fig. 3a, a part of the measured spectrum |R| for d =
14 mm is shown. Because of the wall absorption, |R| = 1
and the resonances show up as dips in |R|. Around E =
5.75 cm™? a pair of closely lying resonances can be seen.
It will be evident later (see Fig. 4) that resonance trapping
takes place between these two resonances.

The method used in this Letter to obtain the en-
ergies Ex and widths I'y of the resonances is as
follows: In Fig. 3b we plot the Argand diagram [real
and imaginary part of R(E) [15]] for d = 14 mm and
554cm %2 =< E =577 cm 2. The narrow resonances
show up as small circles superimposed on larger circles
caused by the broader structures. In order to analyze the
Argand diagram, we propose a centered time-delay analy-
sis (CTDA). From the measured points in a small region
around an energy E, we define a local circle segment
with center point C(E). We define the angle §°(E) as the
angle of the complex number R(E) — C(E). The point C

FIG. 2. Layout of the cavity (to scale): Quartered Sinai bil-
liard (285 X 200 mm, radius 70 mm) with an attached wave-

guide (220 X 23.2 mm). The opening between waveguide and
billiard can be varied in steps of 0.1 mm.
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FIG. 3.

(a) Measured |R| as a function of E = k2. (b) Complex R for 5.54 =< E = 5.77 cm 2. (c) 7¢ obtained directly from the

measurement (full line) and the fitted 7¢ (dashed line). In all three plots, the opening of the slit is d = 14 mm.

moves with E in such a way that 6°(E) increases by 27
in the neighborhood of each resonance, even if the corre-
sponding circle does not go around the origin. We define
the corresponding “time delay” as 7¢(E) = d6#°(E)/dE.
For an isolated Breit-Wigner shaped resonance we have

mR(E) = TR/[(E — Eg)* + T3/4]. 3)

In Fig. 3c, the 7¢ obtained directly from the measurement
and the 7¢ obtained from a fit to >z 78(E), Eq. (3), are
shown for d = 14 mm. The fitted curve agrees well with
the measured values.

The usual fit of the complex R(E) to a sum of
Lorentzians was not possible because of the broad struc-
tures in R(E) caused by the channel resonances. By
means of the CTDA, however, any broad structures are
automatically removed. It was also possible to do an
automatic evaluation of the measured data, which was

mandatory in view of the large amount of data. To test
the CTDA method we performed an analysis of spectra
created theoretically from ZH, Eq. (1), with the wall
absorption simulated by adding a constant to the diagonal
of the imaginary part of J{. The comparison between
the theoretical values and those extracted from the R(E)
showed a good agreement. A more detailed study of the
CTDA method together with a comparison to possible
other methods, e.g., the filter diagonalization method [16],
will be published elsewhere.

The Er and I'g/2 for four resonances obtained from
the measured data with the CTDA method are presented in
Fig. 4. The motion of the Eg and I'g/2 with d is clearly
observable. At least three states start to decrease in width
with increasing d; i.e., there are some evident cases of
resonance trapping. Note that for each opening d of the slit
the data have been fitted independently. The smoothness of
the curves is thus a measure for the reliability by which the
Eg and I'g are extracted from the measured data. Figure 4
even shows hierarchical trapping: One state first traps its
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FIG. 4. Eigenvalue picture for four resonances (a) and the corresponding I'z /2 versus d (b). The different resonances are marked
by different symbols. The widths of the resonances first increase as a function of the opening d of the slit but finally they decrease

again. This demonstrates the effect of resonance trapping.
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closest neighbor only to be trapped at stronger coupling by
another state.

We followed the motion of all the 127 resonance poles
Er — i/2 Tk in the complex plane as a function of in-
creasing d. The widths of 47 resonances decrease with
d while those of 11 resonances stop to increase (within
the accuracy of the CTDA). These two groups can unam-
bigously be identified as trapped resonances, i.e., at least
46% of the resonances get trapped. For 16 of the reso-
nances increasing further in width, it was possible to iden-
tify other resonances getting trapped by them. By this they
acquired an extra contribution to their widths. In total, we
have found that at least 58% of the resonances are strongly
affected by trapping. These resonances are in the whole
energy interval considered.

The estimation 58% of the resonances getting affected
by resonance trapping is the lowest limit. According
to theoretical studies of the diagonal elements of the
effective Hamilton operator Eq. (1) (i.e., without taking
resonance trapping into account) and studies for isolated
resonances [4], one would expect a more or less uniform
increase in width of all resonances. The experiment
shows, however, that the widths of the remaining 42%
increase nonuniformly in d. This indicates that some of
these resonances gain (or lose) width at the cost (or in
favor) of other ones. Thus practically all of the resonances
are affected by the mechanism of resonance trapping.

In conclusion, we have demonstrated experimentally
that resonance trapping takes place in a microwave cav-
ity coupled to a waveguide. This is, to the best of our
knowledge, the first unambigous experimental verification
of the effect. This demonstration was possible by tracing
the motion of the resonance poles as a function of the open-
ing of the slit starting close to the real axis and following
them into the region of overlapping resonances. Our ex-
perimental proof of resonance trapping does not depend on
any model assumptions.

Theoretical studies have shown that the phenomenon
of resonance trapping depends on neither the number of
resonances nor the special shape of the microwave cavity.
The effect appears also in various open many-body quan-
tum systems. In any case, the decoupling of some states
from the decay channels takes place. However, the experi-
mental verification of resonance trapping is important not
only for an understanding of the properties of open quan-
tum systems with overlapping resonances. More important
is, maybe, the necessity of a good knowledge of the de-
tailed properties of open quantum systems for the design
of mesoscopic systems. By tuning the coupling strength
to the decay channels, the properties of the system can be

controlled. Further experimental and theoretical studies of
this interesting topic, including the conductance, have to
be performed.
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