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Do Semiclassical Zero Temperature Black Holes Exist?
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The semiclassical Einstein equations are solved to first order in e � h̄�M2 for the case of a Reissner-
Nordström black hole perturbed by the vacuum stress energy of quantized free fields. Massless and
massive fields of spin 0, 1�2, and 1 are considered. We show that in all physically realistic cases,
macroscopic zero temperature black hole solutions do not exist. Any static zero temperature semiclassical
black hole solutions must then be microscopic and isolated in the space of solutions; they do not join
smoothly onto the classical extreme Reissner-Nordström solution as e ! 0.
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Static spherically symmetric zero temperature black
holes have proven to be very interesting and important
at the classical, semiclassical, and quantum levels. Clas-
sically the only static spherically symmetric black hole
solution to Einstein’s equations with zero surface gravity
(and hence zero temperature) is the extreme Reissner-
Nordström (ERN) black hole, which possesses a charge
equal in magnitude to its mass. At the quantum level,
the statistical mechanical entropy of zero temperature
(extreme) black holes has been calculated in string theory
[1] and shown to be identical to the usual Bekenstein-
Hawking formula for the thermodynamic entropy. The
usual semiclassical temperature and entropy calculations
for ERN black holes have all been made in the test field
approximation where the effects of quantized fields on
the spacetime geometry are not considered. However, it
is well known that quantum effects alter the spacetime
geometry near the event horizon of a black hole. In
particular, they can change its surface gravity and hence
its temperature [2–6].

In this Letter we examine the effects of the semiclassical
backreaction due to the vacuum stress energy of massless
and massive free quantized fields with spin 0, 1�2, and 1
on a static Reissner-Nordström (RN) black hole. Our fo-
cus is on the effects the fields have on macroscopic black
holes, those substantially larger than the Planck mass. We
are specifically interested in those macroscopic black hole
configurations that may have zero temperature when semi-
classical effects are incorporated. Such configurations
must be nearly extreme; that is, they must have a charge to
mass ratio near unity. The fields are assumed to be in the
Hartle-Hawking state, which is a thermal state at the black
hole temperature. At the event horizon the stress energy
of quantized fields in the Hartle-Hawking state should be
of order e � h̄�M2 compared to the stress energy of the
classical electric field, with M the mass of the black hole.
Thus semiclassical effects may be handled using perturba-
tion theory.
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In all physically realistic cases we find that solutions to
the perturbed semiclassical backreaction equations corre-
sponding to static spherically symmetric zero temperature
black holes do not exist. In the context of semiclassical
gravity with free quantized fields as the matter source, this
means that no macroscopic zero temperature static black
hole solutions exist. This is a very surprising and general
result that may have significant implications for black hole
thermodynamics. If there are any zero temperature static
black hole solutions within the full semiclassical theory
of gravity (not perturbation theory), then those solutions
must be isolated in the space of solutions from the clas-
sical extreme Reissner-Nordström solution. That is, they
cannot join smoothly onto the ERN solution as h̄�M2 ap-
proaches zero.

The general static spherically symmetric metric can be
written in the form [7]

ds2 � 2f�r� dt2 1 h�r� dr2 1 r2 dV2, (1)

where dV2 is the metric of the two-sphere. The metric can
describe a black hole with an event horizon at r � rh if
f�rh� � 0. To avoid having a scalar curvature singularity
at the event horizon it is necessary that h21�rh� � 0 as
well [8]. The surface gravity of such a black hole is

k �

µ
1
2

∂
f 0

p
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Ç
r�rh

, (2)

where the prime represents a derivative with respect to r
and the expression is evaluated at the horizon radius, rh.
The temperature is then [9] T � k��2p�.

Since we wish to perturb the spacetime with the vacuum
energy of quantized fields, we begin by considering the
general Reissner-Nordström metric as the “bare” state. For
the RN metric,

f�r� � h21�r� � 1 2
2M
r

1
Q2

r2 , (3)

where Q is the electric charge and M is the mass of the
black hole. The outer event horizon is located at
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r1 � M 1

q
M2 2 Q2 . (4)

For the ERN black hole jQj � M.
In semiclassical gravity, the geometry is treated classi-

cally while the matter fields are quantized. In examining
the semiclassical perturbations of the RN metric caused
by the vacuum energy of quantized fields, we continue
to treat the background electromagnetic field as a clas-
sical field. The right-hand sides of the semiclassical
Einstein equations will then contain both classical and
quantum stress-energy contributions,

Gm
n � 8p��Tm

n�C 1 �Tm
n�� . (5)

We consider the situation where the black hole is in thermal
equilibrium (whether at zero or nonzero temperature) with
the quantized field; the perturbed geometry then continues
to be static and spherically symmetric. To first order in
e � h̄�M2 the general form of the perturbed RN metric
may be written as

ds2 � 2�1 1 2er�r��
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The function m�r� contains both the classical mass and a
first-order quantum perturbation,

m�r� � M�1 1 em�r�� . (7)

The metric perturbation functions, r�r� and m�r�, are de-
termined by solving the semiclassical Einstein equations
expanded to first order in e,
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The right-hand side of Eq. (9) is divergent on the hori-
zon unless ��Tr

r � 2 �Tt
t�� vanishes there in the RN case

and unless it and its first radial derivative vanish there in
the ERN case. Conservation of stress energy implies that
so long as the radial derivative of the stress-energy tensor
is finite at the horizon then there is no divergence in the
(nonextreme) RN case. For the extreme case in two di-
mensions, Trivedi has shown [10] that a divergence of this
quantity does occur for the conformally invariant scalar
field. However in four dimensions Anderson, Hiscock, and
Loranz have shown [11] by explicit numerical computation
of the renormalized stress energy of a quantized massless
scalar field that there is no divergence in the stress en-
ergy at the horizon. If such a divergence did occur in four
dimensions for some other field, it would indicate that a
freely falling observer passing through the event horizon
would see an infinite energy density there. The perturba-
tion approximation would break down in this case, even for
ERN black holes with arbitrarily large masses, and hence
would be outside of the scope of this work.
Assuming the perturbation expansion remains valid, the
functions m�r� and r�r�, obtained by integrating Eqs. (8)
and (9), will contain constants of integration. It is conve-
nient to define them as the values of the metric perturba-
tions on the unperturbed horizon at r1, so that m�r1� �
C1 and r�r1� � C2. Since we are working in perturba-
tion theory, the values of these quantities on the actual
horizon are, to leading order, also C1 and C2, respectively.
Then to first order in e the value of m�r� at the horizon
is m�rh� � M�1 1 eC1�. It is clear that C1 represents a
finite renormalization of the mass M of the black hole. As
in previous work [5,6], we hereafter denote the renormal-
ized perturbed mass at the horizon, m�rh� � M�1 1 eC1�,
by MR . The quantity �1 2 2m�rh��rh 1 Q2�r2

h� then van-
ishes at rh � r1, where now r1 � MR 1 �M2

R 2 Q2�1�2.
Thus, this renormalization causes the perturbed horizon to
be located at the same radius r1 (as a function of the phys-
ical, renormalized mass MR and the charge Q) as the clas-
sical horizon.

To decide whether a semiclassically perturbed black
hole has zero temperature, we must calculate the surface
gravity of the perturbed metric to first order in e. Apply-
ing Eq. (2) to the metric of Eq. (6) and using Eqs. (8) and
(9) to simplify the result gives

k �

q
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R 2 Q2
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�1 1 eC2� 1 4pr1�Tt
t�jr�r1

. (10)

Now consider semiclassical black holes that, at first or-
der in e, have precisely zero temperature. Such black holes
are legitimate solutions within the context of perturbation
theory only if they maintain zero temperature as e is re-
duced to zero. From Eq. (10) it is seen that for the surface
gravity, k, to be zero, the classical surface gravity of the
bare black hole,

k0 �

q
M2

R 2 Q2

r2
1

, (11)

must be at most of order e. Thus, the term in Eq. (10)
involving the (unknown) integration constant C2 will be at
least of order e2 and hence may be discarded in this case.
The total surface gravity of the semiclassical solution at
first order then involves two terms: the classical surface
gravity, which is always non-negative, and a term propor-
tional to �Tt

t�. To have a semiclassically perturbed zero
temperature black hole, it is then necessary that �Tt

t� be
nonpositive at the horizon. This implies that the vacuum
energy density at the event horizon must be non-negative.
If the vacuum energy density is negative at the event
horizon (and therefore the weak energy condition [9]
is violated there), then quantum effects will prevent a
zero temperature semiclassical perturbed black hole from
existing.

The calculation of the expectation value of the stress en-
ergy of a quantized field in a curved spacetime is a very
difficult exercise. However, the problem is simplified in
2439
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the present case by our focus on zero temperature solu-
tions. Since the classical bare solution must have a surface
gravity that is of order e or less, we can simply consider
the vacuum stress energy for the ERN spacetime. While
the actual bare spacetime may be slightly nonextreme (to
order e), the differences between the vacuum stress-energy
tensor of the extreme spacetime and the bare spacetime will
be of order e2 and may be ignored.

The ERN spacetime is asymptotically congruent to the
conformally flat Robinson-Bertotti spacetime as one ap-
proaches the event horizon at r � MR [12–14]. The vac-
uum stress energy of a quantized field should similarly
asymptotically approach the Robinson-Bertotti values as
one approaches the event horizon of the ERN spacetime.
This has been confirmed numerically for the scalar field us-
ing point splitting renormalization [11]. For conformally
invariant (hence, massless) quantized fields, the vacuum
stress energy in the Robinson-Bertotti spacetime may be
obtained using the results of Brown and Cassidy [15] and
Bunch [16]. It is [11]

�Tm
n� �

b�s�
2880p2M4 dm

n , (12)

with b�s� � 1, 11
2 , and 62 for scalar, spinor, and vector

fields, respectively. Since �Tt
t� is positive for all three of

these cases, the vacuum energy density is negative in all
these cases on the ERN horizon, and hence there are no
zero temperature linearly perturbed RN black holes asso-
ciated with conformally invariant quantized fields.

Next let us consider the massless quantized scalar field
with arbitrary curvature coupling, j (the scalar field is con-
formally invariant only if j � 1�6). In this case, the vac-
uum stress-energy tensor has been numerically computed
using point splitting renormalization for the ERN black
hole spacetime [11]. The vacuum stress energy depends
on j in a linear fashion and may be divided into confor-
mal and nonconformal pieces:

�Tm
n� � Cm

n 1

µ
j 2

1
6

∂
Dm

n . (13)

Anderson, Hiscock, and Loranz [11] found that Cm
n ap-

proaches the Robinson-Bertotti values as r ! M and that
all components of Dm

n approach zero in that limit. Hence,
at the horizon of an ERN black hole, the vacuum stress-
energy tensor of a quantized scalar field is independent
of the curvature coupling and is equal to the Robinson-
Bertotti value. Therefore, there are no zero temperature
linearly perturbed RN black holes associated with mass-
less quantized scalar fields for any value of the curvature
coupling.

We also wish to consider quantized massive fields in
the ERN black hole spacetime. The vacuum stress energy
of quantized massive fields in the RN spacetime has been
numerically computed using point splitting renormaliza-
tion in the case of scalar fields, by Anderson, Hiscock, and
Samuel [17]. They also developed the DeWitt-Schwinger
2440
approximation �Tm
n�DS for the stress energy of the

massive scalar field and found that the exact values of the
stress-energy components were well approximated when
the black hole mass M and field mass m satisfy Mm . 2
(it does not matter here whether M is the bare or renor-
malized black hole mass; any resulting difference will be
higher order in e). As the field mass is increased, the
DeWitt-Schwinger approximation rapidly becomes more
accurate. The DeWitt-Schwinger approximate value for
the vacuum energy density of a massive scalar field,
evaluated at the event horizon of an ERN black hole is

�Tt
t�DSjr�M �

e�5 2 14j�
10 080p2M4m2 . (14)

Zero temperature perturbed solutions will be possible only
if �Tt

t� is negative. Examination of Eq. (14) shows that
will be possible only if j $

5
14 , a range that excludes the

cases of greatest physical interest, namely the minimally
(j � 0) and conformally (j � 1�6) coupled fields. A
thorough study of RN black holes (with arbitrary charge)
perturbed by a quantized massive scalar field has been
presented elsewhere [6].

The DeWitt-Schwinger approximation has recently been
extended to the case of massive spinor and vector fields in
the RN black hole spacetime by Matyjasek [18]. The accu-
racy of the DeWitt-Schwinger approximation is unknown
in this case, as no direct calculation of the exact value
of �Tm

n� has been performed for these fields in the RN
spacetime. For the spinor field around an ERN black hole,
Matyjasek finds

�Tt
t�DSjr�M �

37e

40 320p2M4m2 , (15)

while for the vector field, he obtains

�Tt
t�DSjr�M �

19e

3360p2M4m2 . (16)

Since both of these values for �Tt
t� are manifestly positive,

it appears that perturbations of an ERN black hole caused
by quantized massive spinor or vector fields cannot yield
a zero temperature solution.

Finally we note that in general there are higher deriva-
tive terms in the semiclassical backreaction equations
which come from terms in the gravitational action that are
quadratic in the curvature. These terms can be taken into
account perturbatively by putting them on the right-hand
side of the equations and evaluating them in the back-
ground geometry [19]. The effective stress-energy tensor
for these terms vanishes at the event horizon in the ERN
geometry. Thus, these terms cannot cancel the effects of
the negative energy densities due to the quantized fields.

Our results imply that if static zero temperature semi-
classical black hole solutions do exist, they must not
smoothly join onto the classical zero temperature ERN
solution as e � h̄�M2 ! 0. This suggests that any such
solutions are truly microscopic, with masses within a
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few orders of the Planck mass. Whether such small zero
temperature black hole solutions exist remains an open
question.

One implication of the nonexistence of macroscopic
zero temperature black hole solutions is that, for fixed mass
M, there is a minimum temperature that any static spheri-
cally symmetric semiclassical black hole can have, namely
[from Eq. (10)], T � 2r1�Tt

t�jr�r1
. Thus, it is not only

impossible to build a macroscopic zero temperature black
hole [20], it is impossible to build one that is arbitrarily
close to zero temperature. This is a reformulation of one
version of the third law of black hole mechanics [9].
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