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We construct static axially symmetric solutions of SU(2) Einstein-Yang-Mills-Higgs theory in the
topologically trivial sector, representing gravitating monopole-antimonopole pairs, linked to the Bartnik-
McKinnon solutions.

PACS numbers: 04.20.Jb
Introduction.—The SU(2) Yang-Mills-Higgs (YMH)
theory possesses monopole [1], multimonopole [2–4], and
monopole-antimonopole pair solutions [5–7]. The mag-
netic charge of these solutions is proportional to their
topological charge. While monopole and multimonopole
solutions reside in topologically nontrivial sectors, the
monopole-antimonopole pair solution is topologically
trivial.

When gravity is coupled to the YMH theory, a branch of
gravitating monopole solutions emerges smoothly from the
monopole solution of flat space [8–10]. The coupling con-
stant a, entering the Einstein-Yang-Mills-Higgs (EYMH)
equations, is proportional to the gravitational constant G
and to the square of the Higgs vacuum expectation value h.
The monopole branch ends at a critical value acr , beyond
which gravity becomes too strong for regular monopole so-
lutions to persist, and collapse to charged black holes is ob-
served [8–10]. Indeed, when the critical value acr is
reached, the gravitating monopole solutions develop a de-
generate horizon [11], and the exterior spacetime of the
solution corresponds to that of an extremal Reissner-
Nordstrøm (RN) black hole with unit magnetic charge
[8–10,12].

Besides the fundamental gravitating monopole solution,
EYMH theory possesses radially excited monopole solu-
tions not present in flat space [8–10]. These excited so-
lutions also develop a degenerate horizon at some critical
value of the coupling constant, but they shrink to zero size
in the limit a ! 0. Rescaling of the solutions reveals that
in this limit the Bartnik-McKinnon (BM) solutions [13]
of the Einstein-Yang-Mills (EYM) theory are recovered.
For the excited solutions the limit a ! 0 therefore corre-
sponds to the limit of vanishing Higgs expectation value,
h ! 0.

In this Letter we investigate how gravity affects the static
axially symmetric monopole-antimonopole pair (MAP)
solution of flat space [6,7], and we elucidate that curved
space supports a rich spectrum of MAP solutions not
present in flat space.

In particular, we show that, with increasing a, a branch
of gravitating MAP solutions emerges smoothly from the
flat space MAP solution and ends at a critical value a�1�

cr ,
0031-9007�00�85(12)�2430(4)$15.00
when gravity becomes too strong for regular MAP solu-
tions to persist. But while the branch of monopole solu-
tions can merge into an extremal RN black hole solution
at the critical a, there are no Schwarzschild solutions with
degenerate horizon into which the MAP solutions could
merge. Indeed we find that at a�1�

cr a second branch of
MAP solutions emerges, extending back to a � 0. Along
this upper branch the MAP solutions shrink to zero size, in
the limit a ! 0, and approach the BM solution with one
node (after rescaling).

Since the BM solution with one node is related to a
branch of MAP solutions, one immediately concludes
that the excited BM solutions with k nodes are related to
branches of excited MAP solutions. Indeed, constructing
the first excited MAP solution by starting from the BM
solution with two nodes, we find that it represents a MAP
solution, possessing two monopole-antimonopole pairs.

Axially symmetric ansatz.—The static axially symmet-
ric MAP solutions of SU(2) EYMH theory with action
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with Yang-Mills coupling constant e and vanishing Higgs
self-coupling, are obtained in isotropic coordinates with
metric [14]

ds2 � 2fdt2 1
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where f, m, and l are functions of only r and u. The MAP
ansatz reads for the purely magnetic gauge field (A0 � 0)
[6,7]
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and for the Higgs field
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with su�2� matrices (composed of the standard Pauli ma-
trices ti)

t�2�
r � sin2utr 1 cos2ut3,

t
�2�
u � cos2utr 2 sin2ut3 ,

tr � coswt1 1 sinwt2,
(5)

tw � 2 sinwt1 1 coswt2 .

The four gauge field functions Hi and the two Higgs field
functions Fi depend only on r and u. We fix the residual
gauge degree of freedom [3,6,7,14] by choosing the gauge
condition r≠rH1 2 2≠uH2 � 0 [7].

To obtain regular asymptotically flat solutions with fi-
nite energy density we impose at the origin (r � 0) the
boundary conditions

H1 � H3 � H2 2 1 � H4 2 1 � 0 ,

sin2uF1 1 cos2uF2 � 0,

≠r �cos2uF1 2 sin2uF2� � 0 ,

≠rf � ≠rm � ≠r l � 0 .

On the z axis the functions H1, H3, F2 and the derivatives
≠uH2, ≠uH4, ≠uF1, ≠uf, ≠um, ≠ul have to vanish, while on
the r axis the functions H1, 1 2 H4, F2 and the deriva-
tives ≠uH2, ≠uH3, ≠uF1, ≠uf, ≠um, ≠ul have to vanish. For
solutions with vanishing net magnetic charge the gauge
potential approaches a pure gauge at infinity. The corre-
sponding boundary conditions for the fundamental MAP
solution are given by [6,7]

H1 � H2 � 0, H3 � sinu, 1 2 H4 � cosu,

F1 � h, F2 � 0, f � m � l � 1 . (6)

Introducing the dimensionless coordinate x � rhe and
the Higgs field f � F�h, the equations depend only
on the coupling constant a, a2 � 4pGh2. The mass
M of the MAP solutions can be obtained directly from
the total energy-momentum “tensor” tmn of matter and
gravitation, M �

R
t00 d3r [15], or equivalently from

M � 2
R

�2T0
0 2 Tm

m�p2g dr du dw, yielding the
dimensionless mass m �

e
4ph M.

Results.—Subject to the above boundary conditions, we
solve the equations numerically [16]. In the limit a ! 0,
the lower branch of gravitating MAP solutions emerges
smoothly from the flat space solution [6,7]. The modulus
of the Higgs field of these MAP solutions possesses two
zeros, 6z0, on the z axis, corresponding to the location of
the monopole and antimonopole, respectively.

With increasing a the monopole and antimonopole
move closer to the origin, and the mass m of the solutions
decreases. The lower branch of MAP solutions ends at the
critical value a�1�

cr � 0.670. In Fig. 1 we show the energy
density ´ � 2T0

0 � 2LM of the MAP solution at a�1�
cr .

It possesses maxima on the positive and negative z axis
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FIG. 1. The energy density ´�r, z� is shown for the fundamen-
tal MAP solution at a�1�

cr � 0.67.

close to the locations of the monopole and antimonopole
and a saddle point at the origin.

Forming a second branch, the MAP solutions evolve
smoothly backwards from a�1�

cr to a � 0. In the limit
a ! 0 the mass m diverges on this upper branch, and the
locations of the monopole and antimonopole approach the
origin, 6z0 ! 0, as seen in Fig. 2. At the same time the
MAP solution shrinks to zero.

Rescaling the coordinate x � x̂a and the Higgs field
f � f̂�a reveals that the axially symmetric MAP solu-
tions approach the spherically symmetric k � 1 BM so-
lution on the upper branch as a ! 0. Consequently, the
scaled mass m̂ � am of the MAP solutions also tends to
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FIG. 2. For the fundamental (k � 1) and the first excited (k �
2) MAP solution the locations of the monopole, z0 and z1

0 , re-
spectively, are shown as functions of a. In the inset the location
of the antimonopole, z2

0 , of the first excited MAP solution is
shown. The solid and dashed lines correspond to the lower and
upper (mass) branches, respectively.
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FIG. 3. The scaled mass m̂ � am is shown as a function of a
for the fundamental (k � 1) and the first excited (k � 2) MAP
solution. The solid and dashed lines correspond to the lower
and upper (mass) branches, respectively. The stars indicate the
masses of the k � 1, 2, and 3 (from bottom to top) BM solutions.

the mass of the k � 1 BM solution, as seen in Fig. 3. On
the upper branch the limit a ! 0 thus corresponds to the
limit h ! 0 (with fixed G). We note that the ansatz (3)
for the gauge potential includes the spherically symmetric
BM ansatz,

H1 � 0, 1 2 H2 �
1
2

�1 2 w� ,

H3 �
1
2

sinu�1 2 w� , (7)

1 2 H4 �
1
2

cosu�1 2 w� ,

where w denotes the gauge field function of the BM
solution.

Anticipating the existence of excited MAP solutions,
linked to the BM solutions with k nodes on their upper
branches, we construct the first excited MAP solution,
starting from the k � 2 BM solution. Since the bound-
ary conditions of the k � 2 BM solution differ from those
of the k � 1 BM solution at infinity, the boundary condi-
tions of the first excited MAP solution at infinity must be
modified accordingly,

H1 � H3 � 0, H2 � H4 � 1, f1 � 6 cos2u,

f2 � 7 sin2u, f � m � l � 1 . (8)

The upper branch of the first excited MAP solutions
ends at the critical value a�2�

cr � 0.128, from where
the lower branch of the excited MAP solutions evolves
smoothly backwards to a � 0. As seen in Fig. 3, in the
limit a ! 0 the scaled mass m̂ approaches the mass of
the k � 2 BM solution on the upper branch and the mass
of the k � 1 BM solution on the lower branch.
2432
The modulus of the Higgs field of the first excited MAP
solution possesses four zeros, 6z1

0 and 6z2
0 , located on

the z axis, representing two monopole-antimonopole pairs.
The locations of the monopole and antimonopole on the
positive z axis, z1

0 and z2
0 , respectively, are shown in

Fig. 2 as functions of a, together with the node z0 of
the fundamental MAP solution. As a ! 0, z2

0 tends to
zero on both branches; in contrast, z1

0 tends to zero only
on the upper branch. On the lower branch z1

0 tends to
z0, the location of the monopole of the fundamental MAP
solution.

Inspecting the limit a ! 0 for the first excited MAP
solution on the lower branch reveals that, in terms of the
radial coordinate x � rhe, the solution differs from the
fundamental MAP solution on its lower branch only near
the origin, where the excited MAP solution develops a
discontinuity. In terms of the coordinate x̂ � x�a, on the
other hand, the first excited MAP solution approaches the
k � 1 BM solution for all values of x̂, except at infinity.
Hence, the first excited MAP solution does not possess a
counterpart in flat space.

Outlook.—Having constructed the fundamental and the
first excited MAP solutions, the following scenario be-
comes evident. EYMH theory possesses a whole sequence
of MAP solutions, labeled by the number of monopole-
antimonopole pairs k. Each MAP solution forms two
branches, merging and ending at a�k�

cr . In the limit a ! 0,
the upper branch of the kth MAP solution always reaches
the Bartnik-McKinnon solution with k nodes, while the
lower branch of the kth MAP solution always reaches the
Bartnik-McKinnon solution with k 2 1 nodes, except for
k � 1, where the flat space MAP solution is reached in
the limit a ! 0. The critical values a�k�

cr decrease with k,
such that, as a function of a, the scaled mass m̂ assumes a
characteristic “Christmas tree” shape. Thus instead of the
single MAP solution present in flat space, in curved space
a whole tower of MAP solutions appears. An analogous
pattern is encountered for gravitating Skyrmions, which
are likewise linked to the BM solutions [17]. We expect
the gravitating MAP solutions to be unstable like the flat
space MAP solution [5].

For the gravitating monopole solutions a regular event
horizon can be imposed [8–10], yielding magnetically
charged black hole solutions with hair. Likewise for the
MAP solutions of EYMH theory a regular event horizon
can be imposed, yielding static axially symmetric and neu-
tral black hole solutions with hair [18]. Within the frame-
work of distorted isolated horizons the masses of these
black hole solutions can be simply related to the masses
of the corresponding regular solutions [18,19].

It is interesting that the spherically symmetric BM solu-
tions of EYM theory appear in the limit a ! 0 of the
axially symmetric MAP solutions. But the BM solutions
belong to a class of static axially symmetric regular solu-
tions of EYM theory, characterized by their winding num-
ber n [14]. The MAP ansatz can be extended to include the
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winding number n [6,20], allowing solutions which consist
of pairs of static axially symmetric multimonopoles
with winding number n [2,3] and antimultimonopoles
with winding number 2n. Such multimonopole-
antimultimonopole solutions will then form an analogous
set of solutions as the ones encountered above but with
their upper branches reaching axially symmetric EYM
solutions with winding number n in the a ! 0 limit.

But flat space also contains further interesting solutions,
for instance an antimonopole-monopole-antimonopole
system, with the poles located symmetrically with respect
to the origin on the z axis [6].
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