Monopole-Antimonopole Solutions of Einstein-Yang-Mills-Higgs Theory

Burkhard Kleihaus

Department of Mathematical Physics, University College, Dublin, Belfield, Dublin 4, Ireland

Jutta Kunz

Fachbereich Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany (Received 20 June 2000)

We construct static axially symmetric solutions of SU(2) Einstein-Yang-Mills-Higgs theory in the topologically trivial sector, representing gravitating monopole-antimonopole pairs, linked to the Bartnik-McKinnon solutions.

PACS numbers: 04.20.Jb

Introduction.—The SU(2) Yang-Mills-Higgs (YMH) theory possesses monopole [1], multimonopole [2–4], and monopole-antimonopole pair solutions [5–7]. The magnetic charge of these solutions is proportional to their topological charge. While monopole and multimonopole solutions reside in topologically nontrivial sectors, the monopole-antimonopole pair solution is topologically trivial.

When gravity is coupled to the YMH theory, a branch of gravitating monopole solutions emerges smoothly from the monopole solution of flat space [8–10]. The coupling constant α , entering the Einstein-Yang-Mills-Higgs (EYMH) equations, is proportional to the gravitational constant *G* and to the square of the Higgs vacuum expectation value η . The monopole branch ends at a critical value α_{cr} , beyond which gravity becomes too strong for regular monopole solutions to persist, and collapse to charged black holes is observed [8–10]. Indeed, when the critical value α_{cr} is reached, the gravitating monopole solutions develop a degenerate horizon [11], and the exterior spacetime of the solution corresponds to that of an extremal Reissner-Nordstrøm (RN) black hole with unit magnetic charge [8–10,12].

Besides the fundamental gravitating monopole solution, EYMH theory possesses radially excited monopole solutions not present in flat space [8–10]. These excited solutions also develop a degenerate horizon at some critical value of the coupling constant, but they shrink to zero size in the limit $\alpha \rightarrow 0$. Rescaling of the solutions reveals that in this limit the Bartnik-McKinnon (BM) solutions [13] of the Einstein-Yang-Mills (EYM) theory are recovered. For the excited solutions the limit $\alpha \rightarrow 0$ therefore corresponds to the limit of vanishing Higgs expectation value, $\eta \rightarrow 0$.

In this Letter we investigate how gravity affects the static axially symmetric monopole-antimonopole pair (MAP) solution of flat space [6,7], and we elucidate that curved space supports a rich spectrum of MAP solutions not present in flat space.

In particular, we show that, with increasing α , a branch of gravitating MAP solutions emerges smoothly from the flat space MAP solution and ends at a critical value $\alpha_{cr}^{(1)}$,

when gravity becomes too strong for regular MAP solutions to persist. But while the branch of monopole solutions can merge into an extremal RN black hole solution at the critical α , there are no Schwarzschild solutions with degenerate horizon into which the MAP solutions could merge. Indeed we find that at $\alpha_{cr}^{(1)}$ a second branch of MAP solutions emerges, extending back to $\alpha = 0$. Along this upper branch the MAP solutions shrink to zero size, in the limit $\alpha \rightarrow 0$, and approach the BM solution with one node (after rescaling).

Since the BM solution with one node is related to a branch of MAP solutions, one immediately concludes that the excited BM solutions with k nodes are related to branches of excited MAP solutions. Indeed, constructing the first excited MAP solution by starting from the BM solution with two nodes, we find that it represents a MAP solution, possessing two monopole-antimonopole pairs.

Axially symmetric ansatz.—The static axially symmetric MAP solutions of SU(2) EYMH theory with action

$$S = \int \left[\frac{R}{16\pi G} - \frac{1}{2e^2} \operatorname{Tr}(F_{\mu\nu}F^{\mu\nu}) - \frac{1}{4} \operatorname{Tr}(D_{\mu}\Phi D^{\mu}\Phi) \right] \sqrt{-g} d^4x, \quad (1)$$

with Yang-Mills coupling constant e and vanishing Higgs self-coupling, are obtained in isotropic coordinates with metric [14]

$$ds^{2} = -fdt^{2} + \frac{m}{f}(dr^{2} + r^{2}d\theta^{2}) + \frac{l}{f}r^{2}\sin^{2}\theta d\varphi^{2},$$
(2)

where f, m, and l are functions of only r and θ . The MAP ansatz reads for the purely magnetic gauge field ($A_0 = 0$) [6,7]

$$A_{\mu}dx^{\mu} = \frac{1}{2e} \left\{ \left[\frac{H_1}{r} dr + 2(1 - H_2)d\theta \right] \tau_{\varphi} - 2\sin\theta [H_3 \tau_r^{(2)} + (1 - H_4) \tau_{\theta}^{(2)}] d\varphi \right\},$$
(3)

and for the Higgs field

2430

$$\Phi = (\Phi_1 \tau_r^{(2)} + \Phi_2 \tau_{\theta}^{(2)}), \qquad (4)$$

with su(2) matrices (composed of the standard Pauli matrices τ_i)

$$\begin{aligned} \tau_r^{(2)} &= \sin 2\theta \tau_\rho + \cos 2\theta \tau_3, \\ \tau_\theta^{(2)} &= \cos 2\theta \tau_\rho - \sin 2\theta \tau_3, \\ \tau_\rho &= \cos \varphi \tau_1 + \sin \varphi \tau_2, \\ \tau_\varphi &= -\sin \varphi \tau_1 + \cos \varphi \tau_2. \end{aligned} \tag{5}$$

The four gauge field functions H_i and the two Higgs field functions Φ_i depend only on r and θ . We fix the residual gauge degree of freedom [3,6,7,14] by choosing the gauge condition $r\partial_r H_1 - 2\partial_{\theta} H_2 = 0$ [7].

To obtain regular asymptotically flat solutions with finite energy density we impose at the origin (r = 0) the boundary conditions

$$H_1 = H_3 = H_2 - 1 = H_4 - 1 = 0,$$

$$\sin 2\theta \Phi_1 + \cos 2\theta \Phi_2 = 0,$$

$$\partial_r (\cos 2\theta \Phi_1 - \sin 2\theta \Phi_2) = 0,$$

$$\partial_r f = \partial_r m = \partial_r l = 0.$$

On the z axis the functions H_1, H_3, Φ_2 and the derivatives $\partial_{\theta}H_2, \partial_{\theta}H_4, \partial_{\theta}\Phi_1, \partial_{\theta}f, \partial_{\theta}m, \partial_{\theta}l$ have to vanish, while on the ρ axis the functions $H_1, 1 - H_4, \Phi_2$ and the derivatives $\partial_{\theta}H_2, \partial_{\theta}H_3, \partial_{\theta}\Phi_1, \partial_{\theta}f, \partial_{\theta}m, \partial_{\theta}l$ have to vanish. For solutions with vanishing net magnetic charge the gauge potential approaches a pure gauge at infinity. The corresponding boundary conditions for the fundamental MAP solution are given by [6,7]

$$H_1 = H_2 = 0,$$
 $H_3 = \sin\theta,$ $1 - H_4 = \cos\theta,$
 $\Phi_1 = \eta,$ $\Phi_2 = 0,$ $f = m = l = 1.$ (6)

Introducing the dimensionless coordinate $x = r \eta e$ and the Higgs field $\phi = \Phi/\eta$, the equations depend only on the coupling constant α , $\alpha^2 = 4\pi G \eta^2$. The mass M of the MAP solutions can be obtained directly from the total energy-momentum "tensor" $\tau^{\mu\nu}$ of matter and gravitation, $M = \int \tau^{00} d^3 r$ [15], or equivalently from $M = -\int (2T_0^0 - T_\mu^\mu) \sqrt{-g} dr d\theta d\varphi$, yielding the dimensionless mass $\mu = \frac{e}{4\pi\eta} M$.

Results.—Subject to the above boundary conditions, we solve the equations numerically [16]. In the limit $\alpha \rightarrow 0$, the lower branch of gravitating MAP solutions emerges smoothly from the flat space solution [6,7]. The modulus of the Higgs field of these MAP solutions possesses two zeros, $\pm z_0$, on the z axis, corresponding to the location of the monopole and antimonopole, respectively.

With increasing α the monopole and antimonopole move closer to the origin, and the mass μ of the solutions decreases. The lower branch of MAP solutions ends at the critical value $\alpha_{cr}^{(1)} = 0.670$. In Fig. 1 we show the energy density $\varepsilon = -T_0^{0} = -L_M$ of the MAP solution at $\alpha_{cr}^{(1)}$. It possesses maxima on the positive and negative z axis

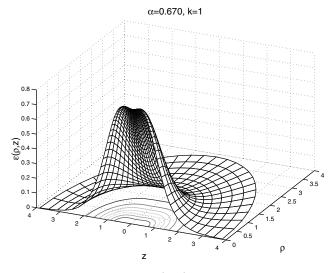


FIG. 1. The energy density $\varepsilon(\rho, z)$ is shown for the fundamental MAP solution at $\alpha_{cr}^{(1)} = 0.67$.

close to the locations of the monopole and antimonopole and a saddle point at the origin.

Forming a second branch, the MAP solutions evolve smoothly backwards from $\alpha_{cr}^{(1)}$ to $\alpha = 0$. In the limit $\alpha \to 0$ the mass μ diverges on this upper branch, and the locations of the monopole and antimonopole approach the origin, $\pm z_0 \to 0$, as seen in Fig. 2. At the same time the MAP solution shrinks to zero.

Rescaling the coordinate $x = \hat{x}\alpha$ and the Higgs field $\phi = \hat{\phi}/\alpha$ reveals that the axially symmetric MAP solutions approach the spherically symmetric k = 1 BM solution on the upper branch as $\alpha \to 0$. Consequently, the scaled mass $\hat{\mu} = \alpha \mu$ of the MAP solutions also tends to

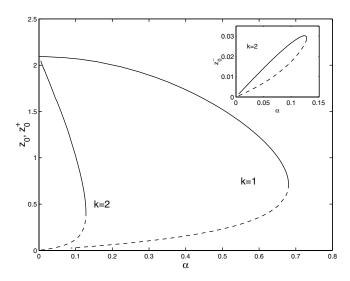


FIG. 2. For the fundamental (k = 1) and the first excited (k = 2) MAP solution the locations of the monopole, z_0 and z_0^+ , respectively, are shown as functions of α . In the inset the location of the antimonopole, z_0^- , of the first excited MAP solution is shown. The solid and dashed lines correspond to the lower and upper (mass) branches, respectively.

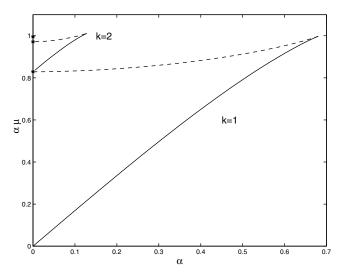


FIG. 3. The scaled mass $\hat{\mu} = \alpha \mu$ is shown as a function of α for the fundamental (k = 1) and the first excited (k = 2) MAP solution. The solid and dashed lines correspond to the lower and upper (mass) branches, respectively. The stars indicate the masses of the k = 1, 2, and 3 (from bottom to top) BM solutions.

the mass of the k = 1 BM solution, as seen in Fig. 3. On the upper branch the limit $\alpha \rightarrow 0$ thus corresponds to the limit $\eta \rightarrow 0$ (with fixed G). We note that the ansatz (3) for the gauge potential includes the spherically symmetric BM ansatz,

$$H_{1} = 0, \qquad 1 - H_{2} = \frac{1}{2} (1 - w),$$

$$H_{3} = \frac{1}{2} \sin\theta (1 - w), \qquad (7)$$

$$1 - H_{4} = \frac{1}{2} \cos\theta (1 - w),$$

where w denotes the gauge field function of the BM solution.

Anticipating the existence of excited MAP solutions, linked to the BM solutions with k nodes on their upper branches, we construct the first excited MAP solution, starting from the k = 2 BM solution. Since the boundary conditions of the k = 2 BM solution differ from those of the k = 1 BM solution at infinity, the boundary conditions of the first excited MAP solution at infinity must be modified accordingly,

$$H_1 = H_3 = 0,$$
 $H_2 = H_4 = 1,$ $\phi_1 = \pm \cos 2\theta,$
 $\phi_2 = \pm \sin 2\theta,$ $f = m = l = 1.$ (8)

The upper branch of the first excited MAP solutions ends at the critical value $\alpha_{\rm cr}^{(2)} = 0.128$, from where the lower branch of the excited MAP solutions evolves smoothly backwards to $\alpha = 0$. As seen in Fig. 3, in the limit $\alpha \rightarrow 0$ the scaled mass $\hat{\mu}$ approaches the mass of the k = 2 BM solution on the upper branch and the mass of the k = 1 BM solution on the lower branch. The modulus of the Higgs field of the first excited MAP solution possesses four zeros, $\pm z_0^+$ and $\pm z_0^-$, located on the *z* axis, representing two monopole-antimonopole pairs. The locations of the monopole and antimonopole on the positive *z* axis, z_0^+ and z_0^- , respectively, are shown in Fig. 2 as functions of α , together with the node z_0 of the fundamental MAP solution. As $\alpha \to 0$, z_0^- tends to zero on both branches; in contrast, z_0^+ tends to zero only on the upper branch. On the lower branch z_0^+ tends to z_0 , the location of the monopole of the fundamental MAP solution.

Inspecting the limit $\alpha \to 0$ for the first excited MAP solution on the lower branch reveals that, in terms of the radial coordinate $x = r \eta e$, the solution differs from the fundamental MAP solution on its lower branch only near the origin, where the excited MAP solution develops a discontinuity. In terms of the coordinate $\hat{x} = x/\alpha$, on the other hand, the first excited MAP solution approaches the k = 1 BM solution for all values of \hat{x} , except at infinity. Hence, the first excited MAP solution does not possess a counterpart in flat space.

Outlook.-Having constructed the fundamental and the first excited MAP solutions, the following scenario becomes evident. EYMH theory possesses a whole sequence of MAP solutions, labeled by the number of monopoleantimonopole pairs k. Each MAP solution forms two branches, merging and ending at $\alpha_{cr}^{(k)}$. In the limit $\alpha \to 0$, the upper branch of the kth MAP solution always reaches the Bartnik-McKinnon solution with k nodes, while the lower branch of the kth MAP solution always reaches the Bartnik-McKinnon solution with k - 1 nodes, except for k = 1, where the flat space MAP solution is reached in the limit $\alpha \to 0$. The critical values $\alpha_{cr}^{(k)}$ decrease with k, such that, as a function of α , the scaled mass $\hat{\mu}$ assumes a characteristic "Christmas tree" shape. Thus instead of the single MAP solution present in flat space, in curved space a whole tower of MAP solutions appears. An analogous pattern is encountered for gravitating Skyrmions, which are likewise linked to the BM solutions [17]. We expect the gravitating MAP solutions to be unstable like the flat space MAP solution [5].

For the gravitating monopole solutions a regular event horizon can be imposed [8-10], yielding magnetically charged black hole solutions with hair. Likewise for the MAP solutions of EYMH theory a regular event horizon can be imposed, yielding static axially symmetric and neutral black hole solutions with hair [18]. Within the framework of distorted isolated horizons the masses of these black hole solutions can be simply related to the masses of the corresponding regular solutions [18,19].

It is interesting that the spherically symmetric BM solutions of EYM theory appear in the limit $\alpha \rightarrow 0$ of the axially symmetric MAP solutions. But the BM solutions belong to a class of static axially symmetric regular solutions of EYM theory, characterized by their winding number *n* [14]. The MAP ansatz can be extended to include the winding number n [6,20], allowing solutions which consist of pairs of static axially symmetric multimonopoles with winding number n [2,3] and antimultimonopoleantimultimonopole solutions will then form an analogous set of solutions as the ones encountered above but with their upper branches reaching axially symmetric EYM solutions with winding number n in the $\alpha \rightarrow 0$ limit.

But flat space also contains further interesting solutions, for instance an antimonopole-monopole-antimonopole system, with the poles located symmetrically with respect to the origin on the z axis [6].

- G. 't Hooft, Nucl. Phys. **B79**, 276 (1974); A. M. Polyakov, JETP Lett. **20**, 194 (1974).
- [2] R.S. Ward, Commun. Math. Phys. 79, 317 (1981); P. Forgacs, Z. Horvarth, and L. Palla, Phys. Lett. 99B, 232 (1981); Nucl. Phys. B192, 141 (1981); M.K. Prasad, Commun. Math. Phys. 80, 137 (1981); M.K. Prasad and P. Rossi, Phys. Rev. D 24, 2182 (1981); E. Corrigan and P. Goddard, Commun. Math. Phys. 80, 575 (1981).
- [3] C. Rebbi and P. Rossi, Phys. Rev. D 22, 2010 (1980);
 B. Kleihaus, J. Kunz, and D. H. Tchrakian, Mod. Phys. Lett. A 13, 2523 (1998).
- [4] See also, P.M. Sutcliffe, Int. J. Mod. Phys. A 12, 4663 (1997).

- [5] C. H. Taubes, Commun. Math. Phys. 86, 257 (1982); 86, 299 (1982).
- [6] Bernhard Rüber, diploma thesis, University of Bonn, 1985.
- [7] B. Kleihaus and J. Kunz, Phys. Rev. D 61, 025003 (2000).
- [8] K. Lee, V.P. Nair, and E.J. Weinberg, Phys. Rev. D 45, 2751 (1992).
- [9] P. Breitenlohner, P. Forgacs, and D. Maison, Nucl. Phys. B383, 357 (1992); Nucl. Phys. B442, 126 (1995).
- [10] A. Lue and E. J. Weinberg, Phys. Rev. D 60, 084025 (1999).
- [11] For zero and very small Higgs self-coupling at $\alpha_{max} > \alpha_{cr}$ a short second branch extends backwards.
- [12] For large Higgs self-coupling the exterior solution is not of the RN-type [10].
- [13] R. Bartnik and J. McKinnon, Phys. Rev. Lett. 61, 141 (1988).
- [14] B. Kleihaus and J. Kunz, Phys. Rev. Lett. 78, 2527 (1997);
 79, 1595 (1997); Phys. Rev. D 57, 834 (1998); 57, 6138 (1998).
- [15] S. Weinberg, *Gravitation and Cosmology* (Wiley, New York, 1972).
- [16] B. Kleihaus and J. Kunz (to be published).
- [17] P. Bizon and T. Chmaj, Phys. Lett. B 297, 55 (1995).
- [18] B. Kleihaus and J. Kunz (to be published).
- [19] A. Ashtekar, S. Fairhust, and B. Krishnan, "Isolated Horizons: Hamiltonian Evolution and the First Law," gr-qc/ 0005083.
- [20] Y. Brihaye and J. Kunz, Phys. Rev. D 50, 4175 (1994).