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Fick’s law is important in transport theory and nonequilibrium statistical mechanics. The Heisenberg
equation of motion for density is examined to see how it could be reduced to the diffusion equation, which
is exactly equivalent to Fick’s law. Conditions that are required have been noted and their implications

explored.
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Introduction.—Fick’s law of diffusion is widely used
in transport theory [1]. It is also generally important in
nonequilibrium statistical mechanics [2,3]. The law is
a phenomenological statement of a macroscopic nature
about the relationship between the mass current J(r, t) and
the particle density n(r, t) of a fluid, with r the position and
t the time. More precisely put, J(r,t) = —D gradn(r, t),
introducing the diffusion constant D, henceforth Fick’s
diffusion constant. Let us consider a homogeneous
neutral fluid. If Fick’s law is combined with the con-
tinuity equation n(r,t) + V - J(r,t) = 0, there results
the diffusion equation 7n(r,t) — DV?n(r,t) = 0, where
[n(r,t)d*r = N, the total number of particles.

Since the continuity equation is an exact equation,
Fick’s law and the diffusion equation are exactly equiva-
lent. Putting aside a generic understanding [3], we might
ask how valid really is the diffusion equation or Fick’s
law? If the diffusion equation could be derived from
a microscopic theory, we might be able to establish the
validity of Fick’s law precisely.

There is another diffusion constant, say Dy, attributed to
self-diffusion, given in terms of the mean square displace-
ment at large times. Although originated in a random walk
model of Brownian motion, it may simply be regarded a
definition since there is no equation of motion involved [3].
It would thus seem that D need not always be the same
as Fick’s constant D. Yet it has been often so assumed,
based on some heuristic arguments [2]. To our knowledge
there are no general proofs of Dy = D. If the diffusion
equation could be derived from first principles, we might
be able to address this question also.

Scalar diffusion equation.—The density function
n(r,t) of Fick’s law is a macroscopic variable. We may
regard it as a nonequilibrium average of the local density
operator A(r,t) at large r and t: n(r,t) = (A(r, 1)), 1—e.
If a fluid is perturbed by a small external field, linear
response theory may be applied to obtain the density
function. For r and ¢ both very large, we obtain an asymp-
totic relationship [4]: (A(r, 1)) = Cx(r,t), where C is a
constant and y is the density-density response function.
Thus if by Fick’s law the density function satisfies the
diffusion equation, so then too must the density-density
correlation function.
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Let Ay = Ax(r = 0) be the Fourier transform (FT) of
fi(r,t = 0) and introduce the density-density correlation
function Ry(z) = (Ax(t)A_)/{Axfi—;), where now the
brackets mean an equilibrium ensemble average after
linear response theory. Then the diffusion equation for the
density function goes over to a scalar diffusion equation
of the form

R.(t) + K*DR.(t) = 0, (1)

where k — 0 and ¢ — o are implied [5], which is
solved by

Ri(t) = exp(—k’D1). (2)

The form of the above solution would appear independent
of any details of a system and in fact independent of a
system itself provided that it is homogeneous.

The arguments behind Fick’s law or the diffusion equa-
tion are evidently physically based and not implausible.
But can they be justified from a more fundamental theory?
Can Fick’s law in fact be deduced from such a theory? It
is established that if a system is Hermitian, (2) is not an
admissible solution for an exact microscopic equation of
motion [6]. Although not correct for small ¢, (2) could
possibly be understood as an asymptotic form of an ad-
missible solution, e.g., hyperbolic secant [7]. We are thus
led to think that (1) must itself be an asymptotic form of
an exact equation of motion. We shall therefore see under
what conditions (1) could result from it.

Exact equation of motion.—Let A = A(t = 0) be a
dynamical variable (e.g., 7ix) of a system defined by a
Hamiltonian H, assumed to be Hermitian. The equation
of motion for A(?) is

A(t) = i[H,A(1)] = i{HA(t) — A()H}. 3)

To extract long time behavior from (3), we shall trans-
form the Heisenberg equation by the recurrence relations
method [8]. (Since we are interested in A(z) for + = 0
only, it is convenient to let A(r) = 0 if ¢ < 0.)

Let A(¢7) be a vector in a realized Hilbert space S of d
dimensions. The formal solution may be expressed as an
orthogonal expansion in this space S as

d-1

AD) = D an(t)fm. (4)

m=0
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Here f,, form a complete set of basis vectors that span
S, ie, (fu,fmw) =0 if m # m’, where (,) means an
inner product defined on S. The coefficients a,, denote the
projection of A(z) on to the basis vectors at time ¢, hence
they are time dependent functions. [Also a,,(r < 0) = 0.]
If we were to choose fo = A, then a,,(r = 0) = 1 or 0 if
m=0orl,2,...,d — 1.

The recurrence relations method for solving (3) rests
on the following premises: If the space S is realized
by the Kubo scalar product and A(#) evolves according to
(3), there are unique recurrence relations for f, and a,,
referred to as RR1 and RR2, respectively: For 0 = m =
d—1,

Fuer = Fn + Dufuei )

Am+1am+l(l‘) = _[.lm(t) + am*l(t)v (6)

where Am = (fm9fm)/(fm*l)/(fmfl»fmfl), AO =1,
and f_; = a—; = 0. It is sufficient to solve the recur-

rence relations, for their solutions are also the solutions
for (3). There is now a large body of literature on the
application of this method [9,10].

Consider b, defined with respect to a,, as follows: For
m=12,....,d — 1,

anlt) = f b aolt — 1) dt, )
0

[where b,,(t < 0) = 0 also]. If (4) is differentiated and
substituted by (7) after itself being differentiated, we arrive
at after some rearrangements

At) = B() - fo o(AG — 1Ydl,  ®

where B(t) = 34! b, (t)fm and o(t) = A1by(). Ob-
serve that (B(t), fo) = 0 for t = 0, so that B(¢) is a vector
in a subspace of S. Equation (8) is an exact transformation
of (3), convenient for long times [11]; see especially 11(c).

Diffusion equation from an exact equation.—By taking
the inner product (A(z),A)/(A, A), with A(z) given by (8),
we obtain

aolt) + [0 o()aolt — ) di' =0, ()

still an exact expression. There are two classes of solu-
tions for (9), depending on d, itself model dependent. If
d < =, the spectra contain isolated singularities only. The
solutions are periodic functions and do not have asymptotic
forms. If d — oo, the spectra contain branches on Riemann
surfaces. The solutions are nonperiodic functions and have
asymptotic forms [12].

We consider systems for which d — % only (condi-
tion 1). Then, for + — o0, (9) may be written as

ao(t) + DP(t)ag = 0, (10)

where

D) = fo olt)dr. (11

Since I)(t) depends on #, (10) is still not in the form of
the scalar diffusion equation (1). But if ¢(¢) vanishes
sufficiently rapidly for large ¢, I)(t) = I)(t — ) = ). We
shall consider only those systems for which I3(r) may be
replaced by a constant /) (condition 2).

The exact equation (9) is thus reduced to the scalar
diffusion equation (1) by conditions 1,2 for t — o. We
can identify ) = kDk = k*D, which through (11) can
give microscopic interpretation to Fick’s diffusion con-
stant. Condition 2 completely erases model dependence
in (10). Even more serious, it brings out a solution seem-
ingly inadmissible. How can it be made compatible with
(4)? (Henceforth the dynamical quantities obtained by
conditions 1,2 will have primes attached.)

We can reconstruct the space S’ by determining the
basis vectors f/, by (5). From (1) and (10), fo =
A'(t = 0), where A'(t) = exp(—It)Aiy, we obtain
fho= (=) "m! Prag, m = 1,2,.... Thus, (f.,fm) =
(=)™ ™ mtm P gy, m' < m = 1,2,.... The
only way they can be mutually orthogonal is if and only
if p = k?D — 0, that is, if k> — 0 (corollary 1).

The reconstructed space S’ is deformed. As k — 0, its
subspace shrinks and to order k2,

A1) = af(t)fy + Ok?), (12)

where a((1) = exp(—IPt) and f) = fiz_o. If (12) is to be
an admissible solution of (3), it must also satisfy the Bessel
equality (A(r),A(r)) = (A,A) [7,8]. From this we obtain
k*Dt = 0(1), where k — 0, t — o (corollary 2).

We have thus shown that the Heisenberg equation of
motion at long times can be reduced to Fick’s law for sys-
tems satisfying conditions 1,2. The general requirements
of the equation of motion result in corollaries 1,2 for the
solution of the reduced equation. If k — O (corollary 1)
is applied to the continuity equation, we can also deduce
that w — 0, with w the frequency. We can thus define
Fick’s domain as k — 0 and t — o but k*>t = finite, also
o — 0, all deduced strictly from the equation of motion.

Self-diffusion.—The self-diffusion constant Dy is also
an integral of the velocity autocorrelation function (VAF),
known as the Green-Kubo (GK) formula. For a homoge-
neous system in one dimension (for simplicity) [13],

D, = lime) — xO)/2 = [ “wwohar,
(13)

where v = dx/dt. Whatever its origin, clearly (13) is sim-
ply a definition. There are no conditions attached (except
stationarity in the VAF in the GK formula). It is possible
that D, = D in Fick’s domain. Outside the domain, D
may still exist but transport is not by Fick’s diffusion.
Consider (11) now, to which we apply the identity
o(t) = A1b1(t) = (B(t), B)/(A,A). Then replacing B(r)
using (8), and with Fick’s conditions (conditions 1,2 and
corollaries 1,2) implied, we obtain a general expression
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for Fick’s constant,
p= [ @y
0

where the double integral term may be shown to van-
ish owing to condition 2 [14]. Now in ID, A = 7 =
%Z ; exp(ikx;), where L is the length. Ignoring noncom-

(14)

mutativity (for simplicity), A= % > iV exp(ikx;). Using
these results in (14) under Fick’s conditions, we proceed
classically and obtain
D= [ War, ()
0

where

> i vi(0) explik(x;(r) — xj)}vjr)

ij/<eXP{ik(xj - xj’)}) '
If k — 0 (corollary 1) in W(z), it is similar to applying the
dipole approximation in, e.g., classical fields interacting
with atoms, where a quasistatic state prevails [15]. Thus
we obtain V() = (v(r)v) for a homogeneous system.
Hence,

V(1) = (16)

D = ];) (v(t)v)dt = Dy.

The two diffusion constants are thus the same but if and
only if Fick’s conditions are satisfied in self-diffusion also.
If otherwise (e.g., long time tails in the VAF), D may still
exist but not D.

Discussion.—Most interesting, perhaps, is what is being
implied by Fick’s conditions, listed below: (1) Transport in
a superfluid state, also in a superconducting state (see be-
low), is not by Fick’s diffusion (by condition 1). (2) What
is sometimes called anomalous transport [16] (i.e., slow
decay in the VAF) is not by Fick’s diffusion (by condi-
tion 2). (3) The solution of the diffusion equation n(r,t =
0) = N&(r) [17] is to be excluded since small ¢ (includ-
ing ¢t = 0) is outside Fick’s domain. It may, however,
be interpreted in the sense of the dipole approximation
(corollary 1) as a system being seen under very long wave-
lengths. (4) Ohm’s law may be viewed as Fick’s law for
charged systems, in which Fick’s constant becomes the
inverse resistivity or the conductivity. Since the current
results from motions of particles, Fick’s diffusion con-
stant and the conductivity or mobility must be linearly
related (Einstein relation) [18]. (5) Fick’s domain is es-
tablished purely by the requirements of the equation of
motion (corollaries 1,2), not by relying on any heuristic
arguments. (6) Fick’s constant is calculable by first prin-
ciples methods. Equation (11) shows that the expression
for Fick’s constant is equivalent to Kubo’s conductivity
formula [19,20]. (7) Fick’s constant is bounded (by con-
dition 2). Hence if the resistivity vanishes, the transport
process ceases to be by Fick’s diffusion.

It is a pleasure to thank Dr. D. ter Haar for stimulating
discussions on transport theory and other related matters.
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