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Thermal Fluctuations of Elastic Filaments with Spontaneous Curvature and Torsion
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We study the effects of thermal fluctuations on thin elastic filaments with spontaneous curvature and
torsion. We derive analytical expressions for the orientational correlation functions and for the persis-
tence length of helices and find that this length varies nonmonotonically with the strength of thermal
fluctuations. In the weak fluctuation regime, the persistence length of a spontaneously twisted helix has
three resonance peaks as a function of the twist rate. In the limit of strong fluctuations, all memory of
the helical shape is lost.
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Recent advances in the art of micromanipulation of
molecules led to many experimental studies of the elas-
ticity of biomolecules such as DNA [1–3], chromatin [4],
proteins [5], and rodlike protein assemblies [6–8]. The
tacit assumption behind many of the theories is that the
elasticity of these biomolecules is of entropic origin [9–11]
and, consequently, they are modeled as random walks [12].
An alternative approach to the modeling of such systems
is based on the assumption that the origin of elasticity
is energetic rather than entropic—there exists a lowest
energy equilibrium configuration with associated sponta-
neous curvature [13], deviations from which give rise to
restoring forces. While such an approach is a straight-
forward extension of the usual theory of elasticity of thin
rods [14], the description of arbitrary spontaneous cur-
vature and twist involves rather complicated differential
geometry and most DNA-related studies considered fluctu-
ations only around the straight rod configuration [15] (see,
however, Refs. [16] and [17]). Following recent studies
on the elasticity and stability of thin rods with arbitrary
spontaneous curvature and torsion [18], in this work we
investigate the effect of thermal fluctuations on the statisti-
cal properties of such filaments. We derive the differential
equations for the orientational correlation functions of the
vectors pointing along the principal axes of the filament
and use them to calculate the correlators and the effec-
tive persistence length of an untwisted helix. Analytical
expressions for the persistence length of a spontaneously
twisted helix are derived, and it is found that this length
varies nonmonotonically with the amplitude of fluctuations
and exhibits resonantlike dependence on the rate of twist.
We emphasize that although the present work is motivated
by recent studies of biomolecules, its aim is to construct
a theoretical framework for the description of fluctuating
stringlike objects that goes beyond current models of poly-
mer physics, rather than to model particular experiments
involving single-molecule manipulation.

A filament of small but finite and, in general, noncir-
cular cross section, is modeled as an inextensible but de-
formable physical line parametrized by a contour length s
(0 # s # L, where L is the length of the filament). To
each point s one attaches a triad of unit vectors t�s� whose
0031-9007�00�85(11)�2404(4)$15.00
component t3 is the tangent vector to the curve at s, and
the vectors t1�s� and t2�s� are directed along the axes of
symmetry of the cross section. Note that t�s�, together with
the inextensibility condition dx�ds � t3, gives a complete
description of the space curve x�s�, as well as of the rota-
tion of the cross section about this curve. The rotation of
the triad t as one moves along the curve is determined by
the generalized Frenet equations

dti�s�
ds

� 2
X
j

Vij�s�tj�s� . (1)

Here Vij�s� �
P

k ´ijkvk�s�, ´ijk is the antisymmetric
tensor, and �vk� are generalized curvatures and torsions.

The theory of elasticity of thin rods [14] is based on
the notion that there exists a stress-free reference configu-
ration defined by the set of spontaneous curvatures and
torsions �v0k�. The set �v0k� together with Eq. (1) com-
pletely determines the equilibrium shape of the filament.
Neglecting excluded-volume effects and other nonelastic
interactions, the elastic energy associated with some ac-
tual configuration �vk� of the filament is a quadratic form
in the deviations dvk�s� � vk�s� 2 v0k�s�,

Uel�dvk� �
kT
2

Z L

0
ds

X
k

akdv2
k , (2)

with T the temperature and k the Boltzmann constant. The
bare persistence lengths a1, a2, and a3 are expressed in
terms of the elastic moduli Ei and the moments of in-
ertia Ii about the axes of symmetry of the cross section
(the precise form of this dependence depends on whether
isotropic or anisotropic elasticity is assumed [18]) and are
inversely proportional to T . The only limitation on the
validity of Eq. (2) is that deformations should be small
on microscopic length scales, of order of the thickness
of the filament. The elastic energy Uel�dvk� determines
the statistical weight of the configuration �vk�. Calculat-
ing the corresponding Gaussian path integrals we find that
�dvi�s�� � 0 and

�dvi�s�dvj�s0�� � a21
i dijd�s 2 s0� . (3)

We conclude that the fluctuations of the generalized curva-
tures and torsions at two different points along the filament
© 2000 The American Physical Society
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contour are uncorrelated and that the amplitude of fluctua-
tions is inversely proportional to the corresponding bare
persistence length.

The statistical properties of fluctuating filaments are
determined by the orientational correlation functions,
�ti�s� ? tj�s0��, where the dot denotes scalar product with
respect to the x, y, and z components (tix , tiy , and tiz) of
the vector ti . In order to derive a differential equation for
these correlators, we calculate the variation of ti�s� under
the substitution s ! s 1 Ds. Integrating Eq. (1) yields
in matrix notation (for small Ds)
t�s 1 Ds� �

(
1 2

Z s1Ds

s
ds1 V�s1� 1

1
2

Z s1Ds

s
ds1

Z s1Ds

s
ds2 V�s1�V�s2�

1
1
2

Z s1Ds

s
ds1

Z s1

s
ds2 �V�s1�V�s2� 2 V�s2�V�s1�	 1 · · ·

)
t�s� , (4)
where the last term appears because of noncommutativ-
ity of matrices V�s1� and V�s2� for different s1 and s2.
We multiply the above expression by tj�s0�, average the
result, and note that for s 1 Ds . s . s0 the fluctuations
dvi�s1� and dvj�s2� are uncorrelated with the fluctuations
of ti�s� and tj�s0�. This implies that averages of products
of V’s and t’s factorize into products of the averages of
V’s and those of t’s. Since the averages of the terms
in the square brackets depend only on js1 2 s2j and their
difference vanishes, in the limit Ds ! 0 this yields (for
s 2 s0 . 0)

≠

≠s
�ti�s� ? tj�s0�� � 2

X
k

Lik�s� �tk�s� ? tj�s0�� , (5)

where

Lik � gidik 1
X

l

´iklv0l with gi �
X
k

1
2ak

2
1

2ai
.

(6)

Together with the initial conditions, �ti�s� ? tj�s�� � dij,
the above equations describe the fluctuations of filaments
of arbitrary shape and flexibility, and in the following this
general formalism is applied to helical filaments.

Consider a helix without spontaneous twist, such that
the generalized spontaneous curvatures and torsions �v0k�
are independent of position s along the contour. In or-
der to visualize the stress-free configuration of such a fila-
ment, it is convenient to introduce the conventional Frenet
triad of unit vectors which consists of the tangent, normal
and binormal to the space curve spanned by the center-
line, supplemented by a constant angle a0 which describes
the rotation of the cross section about this line. The rela-
tion between the two triads is given by v01 � k0 cosa0,
v02 � k0 sina0, and v03 � t0, where k0 and t0 are the
constant curvature and torsion of the space curve. The rate
of rotation of the centerline about the long axis of the he-
lix is v0 � �k2

0 1 t
2
0�1�2, the helical pitch is 2pt0�v

2
0 ,

and the radius is k0�v
2
0 . For constant �k0, t0, a0�, L is

a constant matrix and �ti�s� ? tj�s0�� is given by the ijth
element of the matrix exp�2L�s 2 s0�	. The eigenvalues
of the matrix L can be obtained analytically by solving for
the roots of a characteristic cubic polynomial but the re-
sulting expressions are cumbersome and will be presented
in a longer paper. Here we discuss only two limiting cases.

Weak fluctuations,
P

i gi ø v0.—In this case

�ti�s� ? ti�0�� � �v2
0i�v2

0�e2s�l

1 �1 2 v2
0i�v2

0� cos�v0s�e2s�2l2s�2lf

(7)

with the decay lengths l and lf defined by l21 �P
k gkv

2
0k�v

2
0 and l21

f �
P

k a21
k v

2
0k�v

2
0 . The physi-

cal meaning of this correlator becomes clear by switching
off thermal fluctuations (gk � 0). The first term on
the right-hand side of this equation expresses the fact
that the projection of any vector ti of the triad on the
symmetry axis of the helix is constant, with magnitude
v0i�v0. The projections on the plane normal to this
axis with magnitudes �1 2 v

2
0i�v

2
0�1�2 rotate with an-

gular rate v0. In the presence of weak fluctuations, the
axis of symmetry of the helix becomes a random walk
and the loss of correlations of its projections along the
axes of the triad is described by the factor exp�2s�l�.
In the second term of Eq. (7), exp�2s�2l� describes
the loss of correlations of the orientation of the plane
normal to the axis of the helix. The angular persis-
tence length lf results from averaging over the random
angle of rotation with respect to the axis of the helix
f, �cos�v0s 1 f�s� 2 f�0�	� � cos�v0s� exp�2s�2lf�,
with ��f�s� 2 f�0�	2� � s�lf.

Strong fluctuations,
P

i gi ¿ v0.—In this limit

�ti�s� ? tj�0�� � e2gisdij ; (8)

i.e., the correlators depend only on the bare persistence
lengths and memory about the orientation of the vector
ti decays over contour distance g

21
i . Strong fluctuations

destroy all phase coherence and all correlations between
different vectors of the triad and lead to complete melting
of the helical structure of the filament.

We now proceed to calculate the effective persistence
length lp which controls both the thermal fluctuations of
a filament about its equilibrium configuration and its elas-
tic response to external forces. In the limit L ! `, it is
defined as the ratio of the rms end-to-end separation �R2�
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and twice the contour length of the filament L. The end-
to-end vector is defined as R �

RL
0 t3�s� ds and thus

lp � lim
L!`

1
L

Z L

0
ds

Z s

0
ds0 �t3�s� ? t3�s0�� . (9)

A simple calculation yields a result valid for arbitrarily
strong fluctuations:

lp �
t

2
0 1 g1g2

k
2
0�g1 cos2a0 1 g2 sin2a0� 1 t

2
0g3 1 g1g2g3

.

(10)

For nonvanishing curvature and torsion, this expression di-
verges in the weak fluctuation limit gi ! 0 and the shape
of the filament is nearly unaffected by fluctuations. Non-
monotonic behavior is observed for “platelike” helices,
with large radius to pitch ratio, k0�2pt0. For gi ! 0, the
effective persistence length approaches zero [see Eq. (9)].
Thermal fluctuations expand the helix by releasing stored
length and initially increase the persistence length. Even-
tually, in the limit of strong fluctuations, the persistence
length vanishes again (as g

21
3 ) because of the complete

randomization of the filament. The sensitivity to the con-
stant angle of twist a0 increases with radius to pitch ratio.

In the opposite limit of “rodlike” helices k0 ! 0, the
effective persistence length approaches 2�g3 and becomes
a function of a1 and a2 only. Indeed, since straight in-
extensible rods do not have stored length, their end-to-end
distance and persistence lengths are determined by random
bending and torsional fluctuations only and are indepen-
dent of twist.

The preceding analysis can be extended to fluctuating
filaments with twisted stress-free states characterized by
constant curvature k0, torsion t0, and rate of rotation of the
cross section about the centerline, da0�ds. The relation
between the generalized torsions �v0k�s�� and the Frenet
parameters �k0, t0, a0�s�� is given by v01 � k0 cosa0,
v02 � k0 sina0, and v03 � t0 1 da0�ds. The calcu-
lation of the persistence length involves the solution of
Eq. (5) with periodic coefficients. Details of the analytical
solution will be given elsewhere [19]. For filaments with
circular cross section a1 � a2, the persistence length
is independent of twist. In Fig. 1 we present a plot of
the dimensionless persistence length l� � lpv

2
0�pt0,

on the dimensionless rate of twist w� � 2v
21
0 da0�ds,

for a platelike helix with large radius to pitch ratio
k0�2pt0 and ribbonlike cross section, a1 ø a2. Curve 1
corresponds to the case of weak fluctuations, gi ø v0.
Throughout most of the range, the persistence length is
independent of the rate of twist but a sharp peak appears
at da0�ds � 0 (see inset), accompanied by two smaller
peaks at da0�ds � 6v0�2. Note that, while in the
limit of vanishing pitch, a ribbonlike untwisted helix
degenerates into a normal ring, the cross section of a
twisted helix with da0�ds � 6v0�2 rotates by 6p and
2406
FIG. 1. Plot of the dimensionless persistence length l� as a
function of the dimensionless rate of twist w� for a helical
filament with spontaneous curvature k0 � 1, and torsion t0 �
0.01 (in arbitrary units). The different curves correspond to
different bare persistence lengths: (1) a1 � 100, a2 � a3 �
5000, (2) a1 � 1, a2 � a3 � 100, (3) a1 � 0.1, a2 � a3 � 10,
(4) a1 � 0.01, a2 � a3 � 10. A magnified view of the region
of small twist rates is shown in the inset.

the helix degenerates into a Möbius ring. As the amplitude
of fluctuations increases, the central peak transforms into
a narrow dip and the two Möbius peaks become broad
minima (curve 2). A further increase of fluctuations leads
to the disappearance of the Möbius dips and the central
dip becomes broad and shallow (curve 3). Finally when
gi ¿ v0, all dependence of the persistence length on
the spontaneous twist disappears (curve 4). Note that,
as expected from the discussion following Eq. (10), the
persistence length depends nonmonotonically on the
amplitude of thermal fluctuations.

In order to understand the origin of the Möbius reso-
nances we note that the effective persistence length is a
property of the space curve given by the Frenet triad. On
the other hand, the microscopic Brownian motion of the
filament arises as the result of random forces that act on
its cross section and therefore are given in the frame as-
sociated with the principal axes of the filament. Since the
two frames are related by a rotation of the cross section
by an angle a0�s�, the random force in the Frenet frame is
modulated by linear combination of sina0�s� and cosa0�s�.
This gives a deterministic contribution to the persistence
length which, to lowest order in the force, is proportional to
the mean square amplitude of the random force and there-
fore varies sinosoidally with 62a0�s�. The observed reso-
nances occur whenever the natural rate of rotation of the
helix v0 coincides with the rate of variation of this deter-
ministic contribution of the random force, 62da0�ds.

In summary, we presented a statistical mechanical de-
scription of thermally fluctuating elastic filaments of ar-
bitrary shape and flexibility. We emphasize that the only
limitation on the magnitude of fluctuations is that they are
small on microscopic length scales, and that our model
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describes arbitrary deviations of a long filament from its
equilibrium shape. The general formalism was applied to
helical filaments with and without twist. Strong thermal
fluctuations lead to melting of the helix, accompanied by
a complete loss of helical correlations. In general, the per-
sistence length is a nonmonotonic function of the elastic
constants and moments of inertia. Although through most
of its range twist has a minor effect on the persistence
length, resonant peaks and dips are observed whenever the
rate of twist approaches zero or equals in absolute magni-
tude to half the rate of rotation of the helix.
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