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Localizing Gravity on a Stringlike Defect in Six Dimensions

Tony Gherghetta* and Mikhail Shaposhnikov†

Institute of Theoretical Physics, University of Lausanne,
CH-1015 Lausanne, Switzerland

(Received 6 April 2000)

We present a metric solution in six dimensions, where gravity is localized on a four-dimensional
singular stringlike defect. The corrections to four-dimensional gravity from the bulk continuum modes
are suppressed by O �1�r3�. No tuning of the bulk cosmological constant to the brane tension is required
in order to cancel the four-dimensional cosmological constant.

PACS numbers: 11.10.Kk, 04.50.+h, 11.25.Mj, 98.80.Cq
It is an old idea that spacetime may have more than four
dimensions, with extra coordinates being unobservable
at available energies. A first possibility arises in Kaluza-
Klein-type theories (see, e.g., Ref. [1], and references
therein), where the D-dimensional metric has the form

ds2 � gmn�xm�dxmdxn 2 gab�xa�dxadxb . (1)

Here gmn is the metric of our four-dimensional world,
while gab is the metric associated with D 2 4 (small, with
a size M21) compact extra dimensions. The compactness
of extra dimensions makes them unobservable at energies
E , M, and manifests itself in the existence of an infinite
tower of states with four-dimensional masses �M.

In fact, the Kaluza-Klein metric is not the most gen-
eral metric consistent with Poincaré invariance in four di-
mensions. Its generalization was proposed in [2], and is
given by

ds2 � s�xa�gmn�xm�dxmdxn 2 gab�xa�dxadxb , (2)

where s�xa� is a conformal factor depending on the extra
coordinates only. A number of specific solutions of the
Einstein equations in six-dimensional (6D) spacetime with
a positive 6D cosmological constant were found in [2],
leading to noncompact extra dimensions while still leaving
them unobservable at low energies.

Yet another idea leading to noncompact extra dimen-
sions was suggested in [3–5]. In this case the four dimen-
sions of our world were identified with the internal space of
topological defects residing in a higher-dimensional space-
time (e.g., a domain wall in 5D, string in 6D, monopole in
7D, instanton in 8D, etc.). In these types of backgrounds,
as a rule, there are fermionic and scalar zero modes that
can be associated with the four-dimensional particles that
we observe. At that time it was not clear how to localize
the gauge fields and gravity on topological defects in order
to make the whole construction realistic.

The solitons of string theory—D-branes—provide a
natural framework for the localization of gauge and matter
fields on the world volume of the branes [6]. In field the-
ory language the branes can be associated with topological
defects. Moreover, in Ref. [7] it was discovered that grav-
ity could be localized on the 3-brane domain wall in 5D
spacetime. A normalizable graviton zero mode residing on
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the brane correctly reproduces 4D gravity, while the con-
tinuum spectrum of 5D gravitons, living in the bulk, gives
only a small correction O �1�r2� to Newton’s law at large
distances [7]. The metric of the corresponding 5D space-
time has the general structure of Eq. (2).

The aim of this paper is to see what happens with grav-
ity around a 3-brane of a specific structure (local string
defect in field theory language) in 6D spacetime with a
negative cosmological constant. In fact, a regular solution
of the Einstein equations in this case for an empty space
follows immediately from [2], but does not give any pos-
sibility of compactification. However, the existence of a
brane with positive tension changes the situation and we
find a solution which is very similar to that of Ref. [7]. In
contrast to the 5D case, there is no fine-tuning of the cos-
mological constant in the bulk to the tension of the brane
(the origin of this difference is that the 1D space in the
domain wall scenario is flat, while the 2D space around
the string defect can be curved). Similar to the solution
in Ref. [7], there is a normalizible graviton zero mode at-
tached to the stringlike defect, and the contribution of bulk
gravitons is suppressed, leading to O �1�r3� violations of
Newton’s law. A hierarchy between the four-dimensional
Planck scale and the Planck scale in 6D can be obtained,
leading to a solution of the gauge hierarchy problem simi-
lar to that of Ref. [8].

Other solutions obtained with two transverse dimensions
include a generalization of the original 5D domain wall
setup to the case of parallel brane sources [9], and the case
of global string defects [10–12]. Furthermore, a class of
radially symmetric solutions was considered in [13,14].

Let us begin with the details of our solution. In 6D the
Einstein equations with a bulk cosmological constant L

and stress-energy tensor TAB are

RAB 2
1
2

gABR �
1

M4
6

�LgAB 1 TAB� , (3)

where M6 is the six-dimensional reduced Planck scale. We
will assume that there exists a solution that respects 4D
Poincaré invarance. A six-dimensional metric satisfying
this ansatz is

ds2 � s�r�gmndxmdxn 2 dr2 2 g�r�du2, (4)
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where the metric signature is �1, 2, 2, 2�. For the two
extra spatial dimensions we have introduced polar coordi-
nates �r, u�, where 0 # r , ` and 0 # u , 2p. With
our metric ansatz (4), the general expression for the four-
dimensional reduced Planck scale MP , expressed in terms
of M6, is

M2
P � 2pM4

6

Z `

0
dr s

p
g . (5)
The nonzero components of the stress-energy tensor TA
B

are assumed to be

Tm
n � dm

n f0�r�, Tr
r � fr�r�, and Tu

u � fu�r� ,
(6)

where we have introduced three source functions f0, fr ,
and fu , which depend only on the radial coordinate r. By
using the cylindrically symmetric metric ansatz (4) and the
stress-energy tensor (6), the Einstein equations become
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(7)
where the prime denotes differentiation d�dr. The con-
stant Lphys represents the physical four-dimensional cos-
mological constant, where

R�4�
mn 2

1
2

gmnR�4� �
1

M2
P

Lphysgmn . (8)

By eliminating two of the equations in (7), the sources can
be related by the following equation:

f 0
r � 2

s0

s
� f0 2 fr� 1

1
2

g0

g
� fu 2 fr� . (9)

In the absence of source terms, the discussion of solu-
tions to this coupled system of differential equations for
arbitrary values of Lphys and L . 0 can be found in [2].
However, the case L , 0 was not considered there be-
cause the vacuum solutions lead to noncompact transverse
spaces, and therefore, using (5), one cannot obtain a finite
value of the Planck scale. Here we propose adding singu-
lar source terms in order to obtain a transverse space with
finite volume (which leads to a finite four-dimensional
Planck scale). Thus, the system of Eqs. (7) and (9) de-
scribes the generalization of the setup considered in [2], to
the case where source terms are included. Similar equa-
tions of motion in the global string context were also con-
sidered in Refs. [10–12].

Specifically, we will assume that there is a 3-brane at the
origin r � 0 which is a four-dimensional local stringlike
topological defect in the six-dimensional spacetime, and
has a nonzero stress-energy tensor TA

B parametrized by
(6). For example, one may think of the Nielsen-Olesen
string solution in the 6D Abelian Higgs model. The source
functions describe a continuous matter distribution within
the core of radius e and vanish for r . e. At the origin
we will require that our solution satisfies the boundary
conditions

s0jr�0 � 0, �
p

g �0jr�0 � 1, and gjr�0 � 0 .
(10)
We have set s�0� � 1, since the arbitrary integration con-
stant corresponds to an overall rescaling of the coordinates
xm. Following [15], we can integrate over the disk of small
radius e containing the 3-brane, and define various com-
ponents of the string tension per unit length as

mi �
Z e

0
dr s2pg fi�r� . (11)

where i � 0, r, u. Using the system of Eqs. (7), we obtain
the following boundary conditions:

ss0pgje0 � 2
1

2M4
6

�mr 1 mu� , (12)

and

s2�
p

g �0je0 � 2
1

M4
6

µ
m0 1

1
4

mr 2
3
4

mu

∂
, (13)

where it is understood that the limit e ! 0 is taken. By
analogy with string defects in four dimensions, mr 1 mu

can be referred to as the Tolman mass (per unit length)
[16]. Its nonzero value in four dimensions gives rise to the
Melvin branch for local string defects [17]. Similarly, the
analogous equation of (13) in four dimensions is related
to the string angular deficit [17]. Thus, with these general
conditions, any metric solution to the Einstein equations
with sources will lead to nontrivial relationships between
the components of the string tension per unit length.

Let us now restrict ourselves to the case where the four-
dimensional cosmological constant Lphys � 0, and look
for a solution of the form

s�r� � e2cr . (14)

Then, a solution to the coupled set of Eqs. (7) can be found
with g�r� � R2

0s�r� and

c �

s
2
5

�2L�
M4

6
, (15)
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where R0 is an arbitrary length scale that can be fixed
from Eqs. (12) and (13). Clearly, the negative exponential
solution (14) requires that L , 0. If we now demand that
the solution (15) is consistent with the boundary conditions
(12) and (13), the components of the string tension per unit
length must satisfy

m0 � mu 1 M4
6 , (16)

where mr remains undetermined. In fact, choosing mr �
0 gives

mu � 2R0M4
6c . (17)

Thus, as long as sources are introduced at the origin r � 0
satisfying (16), we obtain a flat Poincaré invariant solution
in four dimensions. Since the solution is already valid for
Lphys � 0, there is no need to tune the brane tension to the
bulk cosmological constant L, as in the case [7]. However,
there is still a tuning in order to satisfy (16).

Having found a solution with a finite volume transverse
space, the four-dimensional reduced Planck scale now
becomes

M2
P � 2pR0M

4
6

Z `

0
dr s3�2 �

5p

3
mu

2L
M4

6 , (18)

where we have used the relation (17). The inequality
M6 ø MP is possible by adjusting the string tension
or the bulk cosmological constant, and thus could lead
to a solution of the gauge hierarchy problem along the
lines of [8].

In order to see that gravity is only localized on the
3-brane, let us now consider the equations of motion for the
linearized metric fluctuations. We will concentrate only
on the spin-2 modes and neglect the scalar modes, which
need to be taken into account together with the bending of
the brane [18]. The vector modes are massive as follows
from a simple modification of the results in Ref. [19]. For
a fluctuation of the form hmn�x, z� � F�z�hmn�x� where
z � �r, u� and ≠2hmn�x� � m2

0hmn�x�, we can separate
the variables by defining F�z� �

P
lm fm�r�eilu. The ra-

dial modes satisfy the equation [19]:

2
1

s
p

g
≠r�s2pg ≠rfm� � m2fm , (19)

where m2
0 � m2 1 l2�R2

0 contains the contributions from
the orbital angular momentum l. The differential operator
(19) is self-adjoint provided that we impose the boundary
conditions

f0
m�0� � f0

m�`� � 0 , (20)

where the modes fm satisfy the orthonormal conditionZ `

0
dr s

p
g f�

mfn � dmn . (21)

Using the specific solution (15), the differential operator
(19) becomes
242
f00
m 2

5
2

cf0
m 1 m2ecrfm � 0 . (22)

This equation is the same as that obtained for the 5D do-
main wall solution [7], except that the coefficient of the
first-derivative term is 2 instead of 5�2. This difference is
due to the extra spatial coordinate in the transverse space.
When m � 0 we clearly see that f0�r� � const is a solu-
tion. Since the modes satisfy the orthonormal condition

R0

Z `

0
dr e2�3�2�crf�

mfn � dmn , (23)

a wave function in flat space can be defined as

cm � e2�3�4�crfm . (24)

Thus the zero-mode wave function becomes

c0�r� �

s
3c
2R0

e2�3�4�cr , (25)

which shows that the zero-mode tensor fluctuation is lo-
calized near the origin r � 0 and is normalizable.

The contribution from the nonzero modes will modify
Newton’s law on the 3-brane. In order to calculate this con-
tribution we need to obtain the wave function for the non-
zero modes at the origin. The nonzero mass eigenvalues
can be obtained by imposing the boundary conditions (20)
on the solutions of the differential equation (22). The so-
lutions of (22) are

fm�r� � e�5�4�cr

∑
C1J5�2

µ
2m
c

e�c�2�r
∂

1 C2Y5�2

µ
2m
c

e�c�2�r
∂∏

, (26)

where C1, C2 are constants and J5�2, Y5�2 are Bessel func-
tions which can be expressed in terms of elementary func-
tions. In the limit that r ! `, the solutions for nonzero m
grow exponentially. One way to regulate this behavior is
to introduce a finite radial distance cutoff rmax. Then im-
posing the boundary conditions (20) at r � rmax (instead
of r � `) will lead to a discrete mass spectrum, where for
sufficiently large integer n we obtain

mn � c

µ
n 2

1
2

∂
p

2
e2�c�2�rmax . (27)

With this discrete mass spectrum we find that, in the limit
of vanishing mass mn,

f2
mn

�0� �
4

cR0
m2

ne2�c�2�rmax . (28)

On the 3-brane the gravitational potential between two
point masses m1 and m2 will receive a contribution from
the discrete nonzero modes given by

DV �r� � GN
m1m2

r

X
n

e2mnr 8
3c2 m2

ne2�c�2�rmax , (29)
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where GN is Newton’s constant. In the limit that rmax !
`, the spectrum becomes continuous and the discrete sum
is converted into an integral. Thus the contribution to the
gravitational potential becomes

DV �r� �
16GN

3pc3

m1m2

r

Z `

0
dm m2e2mr , (30)

�
32GN

3pc3

m1m2

r4 . (31)

Thus we see that the correction to Newton’s law from the
bulk continuum states grows like 1�r3. This correction is
more suppressed than in 5D, because now the gravitational
field of the bulk continuum modes spreads out in one extra
dimension and so their effect on the 3-brane is weaker.

Some remarks are now in order:
(i) If different components of the brane tension do

not satisfy Eq. (16), a more general solution to the system
of Eqs. (7) can be found along the lines of Ref. [2].
By using the parametrization s � z4�5, and g �
a2�z0�2z26�5 [with a � 4R0��5c�], the general solution
can be written as

z�r� � exp

µ
2

5
4

cr

∂
1 2b sinh

µ
2

5
4

cr

∂
, (32)

where b � 0 corresponds to the case (14). The general
condition for the brane tension components now becomes

m0 2 mu � b�b 1 1�
µ

3
2

mu 2
5
2

mr 2 4m0

∂
1 �1 1 2b�2M4

6 . (33)

The choice of b , 0 does not lead to any compactification
because s diverges at large r. However, b . 0 leads to
noncompact spaces defined for a finite interval 0 , r ,
2
5c log� 11b

b � of the type discussed in [2] that may be used
as a description of four-dimensional space.

(ii) The metric solution that we have found can also be
written in the form

ds2 � z2gmndxmdxn 2 R2
0z2du2 2

4
c2z2 dz2. (34)

where z � exp�2 c
2 r�. In this way we see that the origin

r � 0 is now mapped to z � 1. The singular source is
spread around the circumference of a disk of radius R0.
This suggests that the 3-brane at the origin r � 0 can be
interpreted as a wrapped 4-brane, where all angular points
u are identified. In other words, by denoting the wrapped
4-brane by M4, the 3-brane corresponds to M4�S1. While
we have given the explicit solution in six dimensions, our
solution can be generalized, and presumably similar so-
lutions exist at the core of topological defects in higher
dimensions where, for n $ 2 transverse dimensions, the
3-brane can be identified with Mn12�Sn21, where Mn12
has n 2 1 coordinates spherically wrapped. Again, the
corrections to 4D gravity on the 3-brane are expected to
be small since the bulk continuum modes live in a higher-
dimensional space and, by Gauss’s law, the effects on the
3-brane are suppressed.

(iii) It is also interesting to study whether our solution
(or its generalization in higher dimensions) can be realized
in an effective supergravity theory. This would be one step
towards embedding the scenario in string theory.
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