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Phase Diagram of Diluted Magnetic Semiconductor Quantum Wells
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The phase diagram of diluted magnetic semiconductor quantum wells is investigated. The interaction
between the carriers in the hole gas can lead to first-order ferromagnetic transitions, which remain abrupt
in applied fields. These transitions can be induced by magnetic fields or, in double-layer systems, by
electric fields. We make a number of precise experimental predictions for observing these first-order
phase transitions.

PACS numbers: 75.50.Pp, 73.61.Ey, 75.70.Cn
Semiconductor and ferromagnetic materials have
complementary properties in information processing
and storage technologies [1]. Recent advances in the
molecular-beam epitaxy growing techniques have made
possible the fabrication of Mn-based diluted magnetic
semiconductors (DMS) with a rather high ferromagnetic-
paramagnetic critical temperature Tc [2]. In semicon-
ductors it is possible to modulate spatially the density of
carriers by changing the doping profiles but in DMS it is
also suitable to vary the magnetic order of the carriers by
changing the magnetic ion densities. The combination of
these two possibilities opens a rich field of applications
for these materials.

The high critical temperature DMS’s have a high
concentration, c, of Mn21 ions, randomly located. The
itinerant carriers in the Ga12xMnxAs systems are holes,
and their density, c�, is much smaller than the magnetic
ion density. In a doped semiconductor the spin S � 5�2
Mn21 ions feel a long range ferromagnetic interaction
created by the coupling mediated by the itinerant spin
polarized carriers [3–6]. This interaction has some
resemblance to the one observed in the pyrochlores
[7,8], where a similar type of coupling between a narrow
electronic band and magnetic ions is assumed to exist. In
the latter case, the phase diagram is significantly different
from that of a conventional itinerant ferromagnet, showing
first-order transitions and phase separation [9] and/or
the formation of localized textures near the transition
temperature [10]. These features lead to interesting
transport properties, like colossal magnetoresistance.
We expect these effects to be amplified in low density
two-dimensional (2D) doped semiconductors, where the
carrier-carrier interaction can play a significant role and
also favors ferromagnetism [11].

In this work, we investigate the nature of the phase dia-
gram of diluted magnetic semiconductor quantum wells,
with an emphasis on the existence of abrupt transitions
for experimentally accessible parameters. We analyze
quantum wells made of GaMnAs growth in the �001�
direction and with thickness w. The confinement of the
carriers in the z direction can be obtained by sandwiching
0031-9007�00�85(11)�2384(4)$15.00
the GaMnAs system between nonmagnetic GaAlAs
semiconductors.

The system is described by the following Hamiltonian:

H � gImBB
X
I

SI 1 Hh 1 J
X
I ,i

SI ? sid�ri 2 RI � .

(1)

We now analyze the three terms contributing to H .
(i) gImBB

P
I SI is the Zeeman coupling between the

localized spins and an external magnetic field B. Direct
interactions between the magnetic moments of the Mn ions
are much smaller than the interaction with the carrier spins
[12] and therefore we neglect this coupling.

(ii) Hh is the part of the Hamiltonian which describes
the itinerant holes. It is the sum of the kinetic energy of
the holes and the hole-hole interaction energy. We treat
the kinetic energy of the carriers in the framework of the
envelope function approximation. The confinement of the
carriers in the quantum well produces the quantization of
their motion and the appearance of subbands which, for
sufficiently narrow quantum wells, have a clear light-hole
or heavy-hole character. We assume that the hole density
is low enough so that only one of the subbands, heavylike,
is occupied. With this, the in plane motion of the holes
can be approximated by a single parabolic band of effec-
tive mass m�. We describe the interaction between the
electrical carriers with the local spin density approxima-
tion (LSDA) [13]. Except at very low densities, the LSDA
gives an accurate description of the electron gas confined
in quantum wells [14,15].

(iii) The last term is the antiferromagnetic exchange in-
teraction between the spin of the Mn21 ions located at RI

and the spins, �si , of the itinerant carriers. The interaction
between ions mediated by the conduction holes is of long
range. Thus we will assume that thermal distribution of
the orientation of the Mn spins is that induced by an ef-
fective field, due to the holes, which should be calculated
self-consistently.

Since the hole g factor is much smaller than that of Mn
we neglect the coupling between �si and B.
© 2000 The American Physical Society
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The aim of this work is to study the magnetic phase dia-
gram of DMS quantum wells with a 2D density of holes
n2D � c�w. For doing that we write the free energy F

as a function of the carrier spin polarization, j �
n"2n#

n2D
,

which is the order parameter. Here ns is the 2D density of
carriers with spin s. The critical temperatures for the fer-
romagnetic to paramagnetic transition in DMS is typically
smaller than 100 K, and for these temperatures we can con-
sider that the electron gas is degenerate [16]. Hence, the
only temperature dependence in F is due to thermal fluc-
tuations of the Mn spins. Treating the holes in the LSDA
the free energy per unit area takes the form

F � Fions 1
h̄2

m�

p

2
n2

2D�1 1 j2� 1 Exc�n2D, j� . (2)

Here Exc is the hole exchange correlation energy and
Fions is the contribution of ion spins to the free energy:

Fions � 2Tcw log
sinh�h�S 1 1�2��T �

sinh�h�2T �
, (3)

with h �
J
2

n2D

w
j 1 gImBB . (4)

In obtaining Eq. (3) we have assumed that the hole wave
function in the z direction has the form w21�2.

The phase diagram with parameters J � 0.15 eV nm3,
ion concentration c � 1 nm23 and w � 10 nm, is shown
in Fig. 1. We include a single hole band of effective mass
mk � 0.11me and a dielectric constant e0 � 12.2 [6]. We
use the expression given by Vosko et al. [13] for Exc.

The phase diagram is obtained by minimizing the free
energy Eq. (2) with respect to j, for different values of T .
A finite value of j indicates a ferromagnetic state whereas
j � 0 corresponds to the paramagnetic phase. An abrupt/
continuous change, as a function of T , in the value of j

is the mark of a first-/second-order transition. In the
high density region, the dashed line which represents the
second-order phase transition agrees with that obtained
from the divergences of the magnetic susceptibility [6].
The main novelty of our calculation is the identification of
a first-order transition to a fully polarized state at interme-
diate densities. This transition takes place at higher T than
that at which the magnetic susceptibility of the system di-
verges. The existence of a first-order transition between
the paramagnetic and the ferromagnetic phases implies
that, if the chemical potential is kept fixed, the carrier den-
sity will change abruptly. Conversely, if the average hole
density is fixed, a region where inhomogeneous solutions
are stable will appear near the transition, leading to phase
separation. At higher densities, when a continuous tran-
sition between j � 0 and j fi 0 occurs, we also find a
FIG. 1. Phase diagram of a DMS quantum well, using the
parameters described in the text. Full and broken lines represent
first- and second-order phase transitions, respectively, between
ferromagnetic (F) and paramagnetic (P) phases. In the inset we
show the carrier spin polarization for two different densities. The
broken line corresponds to kF � 0.2 nm21, in this case there is
a first-order transition between the j � 1 ferromagnetic phase
and the paramagnetic phase. The continuous line corresponds to
kF � 0.39 nm21. Upon lowering the temperature we obtain a
continuous transition between the P and the F phases followed by
an abrupt transition between two F phases with different values
of j. As commented in the text, this last transition is probably
spurious.

first-order phase transition between the partially polarized
system, j , 1, and the fully polarized phase, j � 1. As
we comment below we believe that this is a spurious tran-
sition related to the LSDA.

In order to understand better the phase diagram it is il-
lustrative to derive the existence of these first-order tran-
sitions analytically. For doing that we treat the hole-hole
interaction in the Hartree-Fock (HF) approximation. We
obtain that the HF results are in rather good agreement
with those obtained using the LSDA. In the HF approach
the hole energy per unit area can be written as, [17]

Eholes �
h̄2

m�

p

2
n2

2D�1 1 j2�

2
3

8p

e2

e0

µ
3p2

w

∂1�3

3 n
4�3
2D ��1 1 j�4�3 1 �1 2 j�4�3� , (5)

where the last term is the exchange energy of the holes.
The free energy of the ions is given by Eq. (3). Near a
paramagnetic-ferromagnetic transition, the hole spin po-
larization is small and we can expand the total free energy
in terms of powers of j:
Ftot�
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with C1 � � 3
p �1�3 e2

e0
.

We expect a paramagnetic-ferromagnetic transition
when the quadratic term in j is zero. This implies

Tc �
1

12w
cJ2S�S 1 1�

p
h̄2

m� 2
1

3p

e2

e0
� 3p2

w �1�3n
22�3
2D

. (7)

At high densities, this approximation gives Tc � 8.7 K,
in good agreement with the LSDA calculation and with
the RKKY solution [6]. Note that the only dependence
of Tc on n2D is through the hole-hole interaction. This is
due to the fact that the two-dimensional density of states
is energy independent. In three-dimensional systems the
kinetic energy scales as n5�3 and Tc is proportional to n1�3

in agreement with the RKKY theory. The order of the
transition can be inferred from the sign of the quartic term
in Eq. (6). If the quartic term is positive the transition
is of second order, while a negative quartic term implies
the existence of a first-order phase transition. Using the
previous expression for Tc, a first-order transition takes
place if

e2

e0

1
p

µ
3p2

w

∂1�3 5
2916

n
28�3
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� 7
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e2
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w �1�3n
22�3
2D �3
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(8)

which implies that for 2D densities lower than nfirst
2D �

2.1 3 1012 cm22 the phase transition is of first order

(kfirst
F �

q
4pnfirst

2D � 0.51 mm21). This estimate is also
in good agreement with the LSDA results shown in Fig. 1.

Some comments about the LSDA are in order:
(i) In the HF treatment, the existence of a negative quar-

tic term in the expansion of the exchange energy in powers
of j is the source for the appearance of first-order phase
transitions. In the LSDA, the intermediate spin polariza-
tion correlation energy is obtained [13,18–20] by assum-
ing that it has the same polarization dependence as the
exchange energy, so that the LSDA expression for Exc
also leads to a negative quartic term when expanded in
powers of j, and a first-order transition is expected. On
the other hand, correlation effects [19] weaken the spin de-
pendence of the interaction energy as compared with the
results in HF, and we find that the LSDA gives a value
for nfirst

2D slightly smaller than that observed in the HF ap-
proximation. Numerical evaluation [19] of the partially
spin polarized Exc also shows a negative quartic term in
the expansion of Exc versus j. Hence, we believe that
the existence of a first-order phase transition is a robust
result, independent of the model used for describing the
interaction between carriers. Note that a mean field ap-
proach, like the one used in this work, is appropriate for
the study of first-order transitions, as the correlation length
is bounded and spatial fluctuations cannot lead to divergent
corrections [21].
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(ii) The interpolation formula used for describing the j

dependence of Exc is not analytic at j � 1, Eq. (5). This
implies that there is, for each pair of values n2D and T , a j

range near j � 1 which cannot be reached by minimizing
the total free energy. When ≠F 2�≠j2 is smaller than zero,
the system prefers to be completely spin polarized. More
accurate descriptions of the LSDA Exc [19] result in an
analytic behavior at j � 1. Therefore we believe that, in
the results shown in Fig. 1, the discontinuous transition
which occurs at lower temperatures than the second-order
transition Tc is, probably, a spurious result due to the use
of a HF-like interpolation for Exc.

We remark again here that the appearance of a first-order
transition when decreasing n2D is a real result, not related
with the non analyticity of the LSDA expression for Exc.

Now we analyze the effect in the phase diagram of
a magnetic field. For B fi 0, the discontinuous transi-
tions shown in Fig. 1 are changed into transitions between
phases with two different polarizations, Fig. 2. General
thermodynamic arguments show that this line of first-order
transitions should end in a critical point, in an analogous
way to the liquid-vapor phase diagram. This critical point
belongs to the Ising universality class. In the present cal-
culations, the first-order transition persists at all B. This is
due to the nonanalyticity of the exchange energy at j � 1.
We expect that a more accurate description of Exc will lead
to a critical value of the field beyond which no sharp tran-
sition is observed. This is the generic picture expected in
transitions between two phases with the same symmetries,
like the liquid-vapor transition [21]. Finite temperature ef-
fects in the hole gas, not taken into account here, should
also weaken the j dependence of the free energy, leading
to the existence of a critical point.

The existence of discontinuous transitions leads to the
possibility of phase separation. The Maxwell construc-
tion [21] gives the region where two coexisting phases of

FIG. 2. Phase diagram of a DMS quantum well as a func-
tion of T and magnetic field for a hole density such that kF �
0.2 nm21. The line separating the fully polarized from the par-
tially polarized system represents a first-order transition.
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FIG. 3. Charge transfer in a bilayer as a function of the ap-
plied voltage V1. nL�R� represents the charge in the left (right)
well. The width of the wells is w � 100 Å and the barriers are
10 Å thick. The total areal density is ns � 6 3 1011 cm22 and
T � 10 K. At small V1 both wells are ferromagnetic, and, by
increasing the voltage, there is a transfer of charge from the left
to the right well. The jump in the charge transfer occurs when
the density in the right well is high enough so that the right well
becomes paramagnetic.

different densities are energetically favored, and we find a
region of phase separation near the line of first-order tran-
sitions. As the two phases are charged, we need to include
electrostatic effects. The simplest situation where phase
separation can be observed is in a bilayer (the dependence
of magnetic couplings on applied field in a bilayer was
considered in [22]). Let us imagine two wells with nomi-
nal 2D density of holes n0. At the temperatures and fields
where the first-order transition occurs, there are two phases
with the same free energies, F1�n0� � F2�n0�. The chemi-
cal potential of these two phases differ at this point, and
we define Dm � m1 2 m2. This difference in chemical
potentials will induce a transfer of charge between the two
layers, dn, until Dm is compensated by the induced elec-
trostatic potential, V � e2dnd�e0, where d is the distance
between the layers. Thus, we obtain dn � Dme0�e2d.
For reasonable values of d 	 10 50 nm, we find that the
charge transfer is small, dn�n0 	 1022. The change in
the electrostatic barrier V � Dm is, however, comparable
to the Fermi energy and can change significantly the trans-
port properties. All these energies are of the order of a
few meV.

In a bilayer system, the first-order transitions analyzed
here can be induced by an applied electric field. The
field induces a difference in the chemical potential of the
two layers, which leads to a charge transfer. By suitably
tuning the parameters, the density in one of the layers will
reach the value at which the first-order transition discussed
above takes place. At this point, there will be an abrupt
change in the charge transfer, which can be measured with
standard capacitive techniques [14,15]. The charge transfer
as function of electric field, for reasonable parameters, is
shown in Fig. 3.

In conclusion, we have analyzed the possible discontinu-
ous transitions in 2D diluted magnetic semiconductors,
where a single subband is occupied [23]. We find that the
interaction between carriers can lead to first-order transi-
tions in quantum wells. At the transition, the holes be-
come fully polarized. This transition can be induced by
a change in the density of the hole gas, the temperature,
a magnetic field, and, in multilayer systems, an applied
electric field. At these transitions, the minority spin band
becomes empty, and the density of states at the Fermi level
is reduced by one half. In double layer systems, significant
electrostatic barriers can appear near the transition. This
change can alter significantly the transport properties [24].
Thus, it can be important in the operation of devices made
with these materials.
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