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Thermodynamics of the Bilinear-Biquadratic Spin-One Heisenberg Chain
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The magnetic susceptibility and specific heat of the one-dimensional S � 1 bilinear-biquadratic
Heisenberg model are calculated using the transfer matrix renormalization group. By comparing the
results with the experimental data of LiVGe2O6 measured by Millet et al. [Phys. Rev. Lett. 83, 4176
(1999)], we find that the susceptibility data of this material, after subtracting the impurity contribution,
can be quantitatively explained with this model. The biquadratic exchange interaction in this material is
found to be ferromagnetic, i.e., with a positive coupling constant.

PACS numbers: 75.10.Jm, 75.40.Mg
The quantum spin chains have been the subject of many
theoretical and experimental studies since the conjecture
was made by Haldane [1] that the antiferromagnetic
Heisenberg model has a finite excitation gap for integer
spins. The model, which has been intensively used to
investigate the physics behind the Haldane’s conjecture, is
the isotropic spin-one Heisenberg Hamiltonian with both
bilinear and biquadratic spin interactions:

H � J
X

i

�Si ? Si11 1 g�Si ? Si11�2� . (1)

For most of the existing quasi-one-dimensional (1D) S � 1
materials, the biquadratic term is very small compared with
the bilinear term as well as the uniaxial anisotropy. This
model was therefore generally thought to be of pure theo-
retical interest. However, recently Millet et al. [2] found
that the magnetic susceptibility of a new quasi-1D S � 1
system, LiVGe2O6, shows a few interesting features which
are absent in other S � 1 materials. They argued that both
the interchain coupling and the uniaxial anisotropy are too
small to create these features and suggested that the bi-
quadratic term plays an important role in this material.

In this paper, we present a theoretical study for the ther-
modynamics of the Hamiltonian (1) with J . 0. We have
calculated the magnetic susceptibility and specific heat
of this model using the transfer matrix renormalization
group (TMRG) method [3–6]. By comparing with the ex-
perimental data of LiVGe2O6, we find that the measured
susceptibility, after subtracting the impurity contribution,
can be quantitatively fitted by the numerical result with
g � 1�6. This shows that the spin dynamics of LiVGe2O6
can indeed be described by the Hamiltonian (1), in agree-
ment with Millet et al. [2]. However, the value of g needed
for fitting the experimental data is different from that sug-
gested by Millet et al. [2].

Let us first consider the properties of the ground state.
It is known that when g � 21 and 1, the model (1) can
be solved rigorously by the Bethe Ansatz [7,8]. Between
these two soluble points, the system is in the Haldane
phase. In this phase, the ground state is a nonmagnetic
singlet with a finite energy gap in excitations. In particu-
lar, when g is between 21 and gic � 0.41, the low en-
380 0031-9007�00�85(11)�2380(4)$15.00
ergy physics of this model can be understood from the va-
lence bond solid model [9]. In this model, each site on the
chain is occupied by two S � 1�2 spins and the ground
state is formed by the bonding of two S � 1�2 spins from
adjacent sites. These singlet bonds must be broken in or-
der to excite the system, and this leads to a nonzero en-
ergy gap in the low-lying spectrum. This picture has been
confirmed experimentally [10,11] as well as numerically
[12]. At gic, the ground state undergoes a commensurate-
incommensurate transition and the critical exponent for the
magnetization changes from 1�2 below gic to 1�4 above
gic [13,14]. Between gic and 1, the system is in the incom-
mensurate phase, and the incommensurate peak in the spin
form factor S�q� of the ground state moves continuously
from p to 2p�3 as g increases from gic to 1 [15]. Above
g � 1, the true nature of the ground state is still contro-
versial [15,16]. Some works [15] suggest that it might be
in a trimerized phase. When g , 21, the ground state is
doubly degenerate and dimerized.

The TMRG is a finite temperature extension of the pow-
erful density matrix renormalization group method [17].
A detailed introduction to this method can be found in
Refs. [3–6]. The TMRG method handles directly infinite
spin chains and thus there is no finite system size effects.
To calculate the spin susceptibility, we first evaluate the
magnetization M of the system with a small external field
B, and then from the ratio M�B we obtain the value of
the susceptibility. The specific heat is evaluated from the
numerical derivative of the internal energy with respect to
temperature. At low temperatures, since the specific heat
is very small, the relative error of the specific heat may
become quite large. In most of our calculations 100 states
are retained.

Figure 1 shows the zero-field spin susceptibility x�T �
normalized by its peak value xpeak as a function of the nor-
malized temperature T�Ts

peak for a set of g, where Ts
peak

is the temperature of xpeak. Above Ts
peak, x�T ��xpeak

behaves similarly for all the curves shown in the figure.
When g is positive, x�T � drops quickly below Ts

peak. This
is because the energy gap in this parameter regime is very
large. As g becomes negative, x�T � just below Ts

peak
tends to become flatter. At g � 21, there is no gap in the
© 2000 The American Physical Society
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FIG. 1. The normalized spin susceptibility x�xpeak as a func-
tion of T�Tpeak at zero field. The experimental data of
LiVGe2O6 obtained by Millet et al. [2] (empty circles) are also
shown for comparison. The inset shows the g dependence
of the peak susceptibility xpeak (empty circles) and the peak
temperature Ts

peak (filled circles). J is set to unity.

excitation spectrum, and x�T � shows a small positive cur-
vature at low temperatures, as in the S � 1�2 Heisenberg
chain.

The inset of Fig. 1 shows the g dependence of xpeak
and Ts

peak. The increase of xpeak with g indicates that
the susceptibility becomes larger when g moves from the
dimerized phase to the Haldane phase. This is consistent
with the picture that in the dimerized phase the spin is
frozen by forming a rather rigid spin singlet, while in the
Haldane phase the spin is relatively free above the Haldane
gap. The peak temperature Ts

peak drops almost linearly
with g. The slope of this drop is about 1.6J per unit g.

In a gapped phase, the low-lying excitation has approxi-
mately the energy dispersion ´k � D 1

y2

2D �k 2 k0�2 1

O��k 2 k0�3�, where k0 is the wave vector of the excitation
minimum, D is the energy gap, and y is the spin velocity.
When T ø D, x�T � has the form [18]

x�T � � l

s
D

T
e2D�T , (2)

where l is a T -independent parameter. From the fit of the
low temperature TMRG results of x�T � with this equation,
we can estimate the value of D. The result of D we ob-
tained is shown in Fig. 2. The maximum energy gap is
�2J�3, located at g � 1�3. Our results agree with other
numerical studies [16,19].

Figure 3 shows the temperature dependence of the spe-
cific heat C�T � for a set of g. The inset of the figure shows
the g dependence of the peak value of the specific heat,
Cpeak, and the peak temperature Tc

peak. Compared with
Ts

peak, Tc
peak behaves quite differently. It drops with in-

creasing g when g , 1�2 and becomes almost a constant
when g . 1�2. Below the peak temperature, C�Cpeak
shows quite similar behavior for all the curves shown in
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FIG. 2. The energy gap as a function of g.

the figure except at very low temperatures. Since there is
no energy gap at g � 61, C�T � at these two points ap-
proaches zero linearly with decreasing T . However, for
other cases, C�T � decays exponentially at low tempera-
tures. For the two exact solvable points g � 61, exact
results are available [20], and the specific heat vanishes
linearly at low temperature. However, due to large errors
at low temperatures, our results do not show this behav-
ior clearly. Above the peak temperature, C�Cpeak drops
quickly for negative g. However, when g becomes bigger,
in particular in the incommensurate phase (g � 2�3 and
1), C�T � shows a weak and broadened peak above Tc

peak.
It seems that there is a new excitation mode accumulated
at low energies in the incommensurate state.

Now let us compare the numerical results with the spin
susceptibility data xexp of LiVGe2O6 measured by Millet
et al. on a powder sample [2]. As mentioned in [2], two
extraordinary features appear in xexp. One is the slow drop
of xexp on both sides of the susceptibility peak, and the
other is the abrupt drop of xexp below 22 K with a sharp
upturn below 15 K. The first feature, in particular the slow
drop of xexp below the peak temperature, is reminiscent of
a gapless system. The second feature of xexp is typical of
a spin-Peierls system with impurities, such as in Zn doped
CuGeO3 [21]. These features have led Millet et al. to
interpret LiVGe2O6 as a nearly gapless S � 1 spin chain
with the spin-Peierls instability. However, whether the
abrupt drop of xexp at 22 K is really due to a spin-Peierls
transition is still an open question.

The sharp upturn of xexp at low temperatures indicates
that the impurity contribution is strong. To see how strong
the impurity effect is, let us first do a comparison without
subtracting the impurity contribution in xexp. In Fig. 1,
the measured susceptibility xexp normalized by its peak
value at about 47 K is compared with the TMRG results
discussed previously. The disagreement between the theo-
retical and experimental results indicates that the impurity
effect is too strong to be ignored even at high temperatures.
2381
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FIG. 3. The normalized specific heat C�Cpeak as a function
of T�Tc

peak. The upper and lower panels are for g larger and
smaller than zero, respectively. The upper inset shows the peak
specific heat Cpeak, and the lower one shows the corresponding
temperature Tc

peak. J is set to unity.

The susceptibility of dilute magnetic impurities gener-
ally has a Curie-Weiss form

ximp �
C0

T 1 u0 1 aT21 , (3)

where C0 is proportional to the impurity concentration
and the square of the effective g factor of the impurity
and u0 is a measure for the interaction among impurities.
The aT21 term in ximp is the leading order correction to
the Curie-Wess term C0��T 1 u0� due to the finite mag-
netic field. If there is no interaction between impurities,
a � �2S02 1 2S0 1 1� �g0mBB�kB�2�10 with g0 and S0

the effective g factor and spin of impurities. This term
is not important at high temperatures. But when the tem-
perature becomes comparable with the level splitting of
an impurity spin in a magnetic field, this term becomes
important. It prevents ximp from being divergent at low
temperatures. a is typically of order 1 K2 when B � 1T .

At very low temperatures the measured susceptibility is
a sum of ximp and x�T � given by Eq. (2), i.e.,

xexp�T � � ximp 1 l

s
D

T
e2D�T . (4)
2382
By fitting the low temperature experimental data below
15 K with this equation, we find that C0 �
0.115 cm3 K�mol, u0 � 14.1 K, a � 2.18 K2, l �
0.0063 cm3�mol, and D � 36 K. These parameters show
that not only the contribution from impurities to xexp is
large as expected, but also the interaction among impu-
rities is strong at low temperatures. There is no simple
explanation for such a strong correlation among impuri-
ties. Clearly this is an important problem which should be
further investigated both theoretically and experimentally.

By subtracting the impurity contribution from xexp, we
obtain the intrinsic susceptibility xintrin of LiVGe2O6. The
result of xintrin together with the raw data xexp and ximp is
shown in Fig. 4. After the subtraction, the abrupt drop of
xexp at 22 K becomes less distinct, but the change in the
slope is still visible. The most significant change of xintrin
compared with xexp is that the peak shifts to a higher tem-
perature and the drop below the peak temperature becomes
more rapid. By comparing in detail the normalized xintrin
with the theoretical results, we find that xintrin can be well
fitted by the numerical curve with g � 1�6 (Fig. 4). This
shows that the biquadratic term in model (1) does have
an important contribution to the low energy spin dynamics
of LiVGe2O6, in agreement with Millet et al. [2]. How-
ever, the value of g which gives the best fit, in particular
its sign, is different from that suggested in Ref. [2]. A
detailed comparison indicates that xintrin lies between the
theoretical curves for g � 1�4 and 1�8 in the whole tem-
perature region. Thus the uncertainty in the value of gc is
very small. The result at gc � 21 suggested in Ref. [2]
does not fit the experimental data.

At g � 1�6, Ts
peak � 1.025J. Setting this Ts

peak equal
to the peak temperature of xintrin, we find that J � 73 K.
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FIG. 4. Comparison of the TMRG result (solid line) of the spin
susceptibility of the S � 1 bilinear-biquadratic model with J �
73 K and g � 1�6 with the experimental data of LiVGe2O6
[2]. xintrin is the experimental data after subtracting the impurity
contribution ximp from xexp .



VOLUME 85, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 11 SEPTEMBER 2000
Compared with the gap value D � 36 K obtained previ-
ously, we have D � 0.49J . This value of D is rather
close to the Haldane gap, 0.54J, of the Hamiltonian (1)
at g � 1�6 (Fig. 2). This suggests that the low energy
spin excitations are gapped and the change of the slope at
22 K is not due to a spin-Peierls transition.

We have also compared xintrin with the spin susceptibil-
ity of the S � 1 Heisenberg model with uniaxial single-ion
anisotropy but without the biquadratic term [22], namely
the model H � J

P
i�Si ? Si11 1 D

P
i S2

iz�. However, in
the parameter region which might be physically relevant,
21�2 , D , 1�2, we find that none of the numerical
curves fits xintrin in the whole temperature range. This
shows that the uniaxial anisotropy in LiVGe2O6 is in-
deed very small, in agreement with the analysis of Millet
et al. [2].

The above analysis confirms the importance of the bi-
quadratic exchange interaction in LiVGe2O6. On the other
hand, it also raises some new questions. In the argument
given by Millet et al., the biquadratic term comes from
fourth order since at second order the antiferromagnetic
and ferromagnetic terms partially cancel. However, the co-
efficient of this biquadratic term is negative (i.e., g , 0)
according to their calculation, in contrast with the result
we obtain. To resolve this disagreement, further investiga-
tion into the electronic structure of LiVGe2O6 is needed.
More detailed measurements with high quality single crys-
tals would also help clarify the impurity effect as well as
the nature of the anomaly at 22 K in this material. In a
S � 1 Heisenberg chain, the localized nonmagnetic im-
purity may induce midgap states within the Haldane gap
[23–25]. A better understanding of the physical properties
of these midgap states would also be helpful for further
understanding the thermodynamics of LiVGe2O6 at low
temperatures.

In summary, the thermodynamic properties of the bilin-
ear and biquadratic Heisenberg model have been studied
and compared with the experiments. The measured sus-
ceptibility data of LiVGe2O6, after subtracting the impu-
rity contribution, can be quantitatively explained by the
model (1) with g � 1�6.
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