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Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities
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Statistical properties of experimental eigenfunctions of quantum chaotic and disordered microwave
cavities are shown to demonstrate nonuniversal correlations due to localization. Varying energy E and
mean free path l enable us to experimentally tune from localized to delocalized states. Large level-to-
level inverse participation ratio (I2) fluctuations are observed for the disordered billiards, whose distribu-
tion is strongly asymmetric about �I2�. The spatial density autocorrelations of eigenfunctions are shown
to spatially decay exponentially and the decay lengths are experimentally determined. All the results are
quantitatively consistent with calculations based upon nonlinear sigma models.

PACS numbers: 73.23.–b, 05.45.Mt, 73.20.Dx, 73.20.Fz
The universal properties of quantum chaotic systems
have been extensively studied in terms of their eigenvalue
and eigenfunction statistics [1]. In random matrix theory
(RMT), the Gaussian distribution of eigenfunction ampli-
tudes c��r� leads to the universal Porter-Thomas (PT) dis-
tribution for the densities jcj2, which has been observed in
microwave cavities [2] as well as other systems. However,
nonuniversality has important manifestations, for instance,
due to periodic orbits which lead to scars in eigenfunctions,
and localization arising from quantum interference in dif-
fusion. While there have been many theoretical treatments,
from semiclassical periodic orbit theories [1] to nonlinear
sigma models [3], there have been few experimental stud-
ies of eigenfunctions because of their lack of accessibility.

In this paper, we present several striking manifesta-
tions of localization in experimental eigenfunctions of dis-
ordered microwave billiard cavities. Localization due to
boundary or impurity scattering results in correlations that
affect statistics and spatial correlations of the eigenfunc-
tions in several measures, leading to deviations from their
universal values for quantum chaotic systems. The mo-
ments of the density distribution, In �

R
jC�r̄�j2n d3r, in

particular, the inverse participation ratio I2 (IPR), and their
distributions PIn �In�, are important measures of the prop-
erties of the chaotic and disordered eigenfunctions. In
chaotic billiards, I2 has a mean value �I2� close to that
of the universal two-dimensional 2D limiting value of 3.0,
with small level-to-level fluctuations dI2 ø �I2�, resulting
in a nearly symmetric distribution about �I2�. In disordered
billiards not only is the mean value �I2� ¿ 3.0, but the
fluctuations are also much greater dI2 � �I2�. The IPR
distribution for the disordered billiards is strongly asym-
metric about �I2�, and is quantitatively consistent with the
calculations based upon the nonlinear sigma models of
supersymmetry, parametrized by a conductivity g [4,5].
Spatial correlations are studied in terms of the density
autocorrelation �jC�r�j2jC�r 0�j2� and are shown to die out
more rapidly in the disordered billiards compared with
the chaotic geometries with a characteristic decay length
given by the mean free path l. Here again the data are in
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quantitative agreement with the sigma model calculations.
Our results represent the first quantitative comparison of
experiments and theory.

The experiments were carried out using thin (height d ,

6 mm) cavities, whose cross sections can be shaped in es-
sentially arbitrary geometries. For these two-dimensional
cavities, the operational wave equation is �=2 1 k2�C �
0, with Dirichlet boundary conditions c � 0 at metallic
boundaries; c � Ez is the microwave electric field. Simi-
lar microwave experiments, which exploit this quantum
mechanical—electromagnetic (QM-EM) mapping, have
been used to study quantum chaos in closed [6,7] and open
systems [8]. Eigenfunctions jc�r�j2 were directly mea-
sured using a cavity perturbation technique [6]. Localiza-
tion effects were observed by fabricating billiards in which
1 cm circular tiles were placed in a 44 cm 3 21.8 cm rect-
angle at random locations (Fig. 1) to act as hard scatterers.
(The locations were generated using a random number gen-
erator and the tiles placed manually.) Several realizations

FIG. 1. (a),(b) Experimental eigenfunctions of a disordered
billiard with n � 36 scatterers (noted by the black dots) (a) a
strongly localized state, f � 3.04 GHz, I2 � 13.42 and (b) a
delocalized state f � 7.33 GHz, I2 � 4.06. Eigenfunctions of
(c) Sinai-stadium billiard I2 � 3.01; (d) an integrable rectangle
(I2 � 2.25 for all states).
© 2000 The American Physical Society
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of the disordered geometry were experimentally studied,
by varying the density of scatterers from 12 to 71, thus
varying mean free path l � 8.9 to 3.6 cm. Earlier experi-
ments [2] had shown that these disordered geometries are
an excellent experimental realization of the classic problem
of an electron in a 2D disordered potential. Subsequent to
this work, there have been important theoretical develop-
ments [4,5,9], some motivated by our earlier experiments.

The experimental eigenfunctions directly demonstrate
the trend toward decreasing localization from disordered to
chaotic to integrable as seen in Fig. 1, which shows rep-
resentative experimental eigenfunctions, along with their
corresponding IPR I2, for several billiards. The strongly
localized state Fig. 1(a) at f � 3.04 GHz of the disordered
billiard with N � 36 scatterers has very large I2 � 13.42.
Note that this is a direct observation of localization of EM
waves which also maps to QM (matter) waves. In con-
trast the more delocalized state at higher frequency f �
7.33 GHz [Fig. 1(b)] explores almost all the available co-
ordinate space similar to chaotic cavities and has a smaller
I2 � 4.06. For the chaotic Sinai stadium, typical values
of the IPR are around 3.0 [I2 � 3.01 for this eigenfunc-
tion Fig. 1(c)] while for the integrable rectangle billiard
Fig. 1(d) IPR I2 � 2.25 for all eigenfunctions. Figure 1
demonstrates a key advantage of our experiments, which is
that by varying l and wave vector k we are able to access a
wide range of the disorder strength kl, from strongly local-
ized states for kl , 1 to delocalized states with kl ¿ 1.

Eigenfunctions such as in Fig. 1 were then analyzed
in terms of I2 and PI2 �I2�. In the following, for conve-
nience, we use the notation I2 �

R
jC�r�j4 dy �

R
u2 dy,

w � �I2 2 3��6, u � jC�r�j2, and I1 �
R
jC�r�j2 dy �

1, and the integral is over the volume y (area in 2D).
Nearly 400 eigenfunctions were analyzed each containing
more than 3200 eigenfunction values.

Figure 2 shows level-to-level variations I2�E� for the
Sinai stadium. Here I2 is mainly clustered around a mean
value of �I2 � � 3.0, with relatively small level-to-level
fluctuations. The IPR distribution PI2 �I2� of the chaotic
Sinai-stadium billiard is shown in Fig. 3 (top panel).
PI2�I2� is seen to be a nearly symmetric distribution with
a small width I2 2 �I2 � ø �I2 �.

Reference [2] demonstrated that the Sinai-stadium
billiard data obey the universal PT distribution Pu�u� �
�2pu�21�2 exp�2u�2�, with u � jCj2 to a remarkable
degree, while deviations from PT were demonstrated
due to localization in the disordered billiards. The IPR
for PT distribution can be immediately obtained I2 �R`

0 u2Pu�u� du � 3.0, which is a universal value. Note
that there are no fluctuations expected about this universal
value in RMT, i.e., PI2�I2� is a d function at I2 � 3 [10].
Clearly boundary scattering on the system length scale
R leads to nonuniversal correlations (e.g., from periodic
orbits leading to scars in the wave functions). This breaks
the assumption in RMT of Gaussian fluctuations of the
eigenfunction amplitude, and in turn leads to fluctuations
FIG. 2. Large level-to-level fluctuations are observed in the
IPR I2�E� vs E of the disordered billiard �l � 5.1 cm�. Also
note the gradual trend towards a universal limiting value of 3.0
indicated by the solid line which represents a model described in
the text. The fluctuations of the Sinai stadium are much smaller
and are clustered around �I2� � 3.0.

in the distribution PI2 �I2� (although of narrow width)
observed in Fig. 3 (top panel).

Even more strikingly, the IPRs of the disordered bil-
liards shown in Fig. 2 display a remarkably large spec-
trum of level-to-level fluctuations (Fig. 2). For small f,
when l . l, strong localization leads to large values of
I2 in the disordered cavity, which can be as high as �20.
It is worth noting that the density distributions Pu�u� of
the eigenfunctions deviate strongly from the PT distribu-
tion and are consistent with the large IPR values. In this
paper we have focused on the billiards with l � 8.9 and
l � 5.1 cm.

As f is increased (or l is decreased), the IPR progres-
sively decreases, approaching the universal limiting value
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FIG. 3. IPR distributions PI2 �I2� of the disordered billiards
with l � 8.9 cm (middle panel) and l � 5.1 cm (bottom panel)
are strongly asymmetric and non-Gaussian. The distribution for
the chaotic Sinai-stadium billiard (top panel) is nearly symmet-
ric about the mean value 3.0. The lines represent calculations
based on the nonlinear sigma model.
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of 3, as shown in Fig. 2. The corresponding distribu-
tion PI2�I2� shown in Fig. 3 (bottom) is strikingly different
from the Sinai-stadium case, in that, it is strongly asym-
metric, reflecting the very large I2 ¿ �I2 � values that are
present, and is strongly non-Gaussian. The IPR fluctua-
tions in Fig. 2 are closely similar to the famous universal
conductance fluctuations of a mesoscopic system.

Recently several theoretical studies have calculated
the IPR distribution based on the supersymmetry method
[4,5]. For a mesoscopic system the IPR distribution
depends on the conductivity g of the system, defined as
g � ln�R�l���w�, where R is the system size, l is the
mean free path, and �· · ·� is the realization average for a
fixed “disorder strength” 2kl. The resulting probability
distribution P�I2� for I2 , �I2� � 3 is [4]

PI2 �I2� � C1
g
2

exp

∑
2

g
6

�I2 2 �I2��

2
p

2
e2g�3�I22�I2��

∏
, (1)

and the corresponding distribution for I2 ¿ �I2�,

PI2�I2� � C2

r
g
I2

exp

µ
2

p

6
gI2

∂
, (2)

where C1 and C2 are normalization constants.
The solid lines in Fig. 3 (middle and bottom panels)

represent Eq. (2) for I2 . �I2� using conductivity values
(middle panel) g � 2.1 for l � 8.9 cm and (bottom panel)
g � 1.0 for l � 5.1 cm, and are seen to describe the data
very well. Another way of presenting the comparison with
Eq. (2) is by using a scaled variable q � gI2 whence the
distribution changes to a Porter-Thomas distribution in q.
The system is within the weak disorder limit, i.e., the ran-
dom phase approximation is still valid, and g depends
weakly on the disorder factor 2kl [11]. Now rescaling the
I2 with g we obtain the distribution Pq�q� (unnormalized)
and plot ln�Pq�q�pq � vs q in Fig. 4. Both [correspond
to Fig. 3 (middle and bottom panels)] show a straight line
slope � 21 which implies a good agreement of theory
and experiment for IPR distribution in a moderate disor-
dered region where I2 ¿ �I2�. This is the first experimen-
tal observation of the asymmetric distribution predicted by
Prigodin and Altshuler [4].

We now return to the case of the Sinai stadium. Al-
though a formulation in terms of a ballistic sigma model
has been presented for chaotic cavities [12], it is not sim-
ply amenable to experimental comparison. Instead we use
Eq. (1) with the assumption that since l 	 R, a suitably
large conductivity �g ¿ 1� can be used. In our experimen-
tal case, g 	 7.8 matches Eq. (1) not only for I2 , �I2�,
but also for I2 . �I2�, as shown in Fig. 3 (top panel). The
nearly symmetric distribution can be understood since the
fluctuations arise from correlations at the scale of the sys-
tem length R, which is the only length scale in the problem.
The values of g corresponding to the disordered billiards
2362
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FIG. 4. The IPR distribution of Fig. 3 for the disordered bil-
liards replotted (asymptotic part) using the scaled variable q �
gI2. Each solid line is the Porter-Thomas distribution vs q and
agrees for large I2 ¿ �I2�.

and the Sinai-stadium billiard are consistent with the �w�
values and the mean free paths.

We now show that the experimental data also di-
rectly demonstrate the decay of spatial correlations
�C2�r�C2�r 0� � of the eigenfunctions and obtain the decay
length, which corresponds to the classical mean free
path. To calculate the correlation with arbitrary disorder
strength 2kl, defining K�r� � jImG�r 0�j2��pn�2 , where
G�jr 2 r 0j� � �rj�E 2 H�21jr 0� is the Green function of
the disordered system Hamiltonian, then it can be shown
[13] that K�r� � j

1
p

R`
2`

1
11y2 J0�kr�1 1

1
2kl y�� dyj2.

For the chaotic or ballistic limit �2kl ¿ 1�, the result
for Gaussian fluctuations is �C2�r�C2�r 0� � 
 1 1 �I2 2

1�J2
0 �r 2 r 0�, where J0 is the first order Bessel function.

The correlation for a moderate disordered case with correct
limits can be derived repeating the calculations of Ref. [14]

≠
C2�r�C2�r 0� � 
 1 1 �I2 2 1�K�kjr 2 r 0j� (3)


 1 1 �I2 2 1�J2
0 �kjr 2 r 0j�e2kjr2r 0j�kl . (4)

These are valid when r 2 r 0 ł l. We have solved
K�kjr 2 r 0j� numerically. In Fig. 5, we plot the average
correlation derived from experimental data, numerical cal-
culations of Eq. (3), and analytical expression of Eq. (4)
for different disorder strengths 2kl. For the Sinai billiards,
the average correlation starts at 3 and tends to 1 via Friedel
oscillations, consistent with Eq. (4) with 2kl � 37, which
is very large and hence the result is close to that of the
universal dependence given by kl � `. For disordered
billiards, the autocorrelation is very large (�I2) for short
lengths, i.e., around jr 2 r 0j 	 0 due to localization, but
the autocorrelation decays with a decay length scale, re-
sponsible for fast fall, and it should go to zero at large
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FIG. 5. Density autocorrelation �C2�r�C2�r 0� � of eigenfunc-
tions of the Sinai stadium and disordered billiards with fixed dis-
ordered strength 2kl. Experiment (dotted lines), Eq. (3) (dashed
lines), and Eq. (4) with 2kl � 7, 12, and 37 (solid lines).

kjr 2 r 0j. The experimental data show good agreement
with the numerical and analytical calculations for moder-
ate disorder, as shown in Fig. 5 for values 2kl � 12 and
7. These values are in excellent agreement with the corre-
sponding mean free paths (l � 3.6, 5.1, 5.9, and 8.9 cm)
obtained by directly considering the number of scatterers
N , so that l �

p
ab�N , and a and b are the sides of the en-

closing rectangle. Thus our analysis directly demonstrates
localization and yields a quantitative measure in terms of
the correlation decay length.

Returning to the level-to-level I2 data in Fig. 2 we note
that they can be viewed as tuning the degree of localiza-
tion by varying energy E. Representing the IPR as I2�E� �
I2,sm�E� 1 dI2�E�, i.e., a smooth part I2,sm�E� plus fluc-
tuations dI2�E�, we discuss the trends in I2�E�. Cal-
culations in Ref. [15] based on the infinite dimensional
tight binding model show that I2�E� diverges exponen-
tially near the critical point Ec: I2�E� � I2�E � `� 3

exp�A�jE 2 Ecj
m�, with m �

1
2 , due to very strong cor-

relations of the wave function near Ec. I2�E � `� will
be obviously the asymptotic universal value 3 as predicted
by RMT in 2D. Our experimental IPR data are as large
as IPR � 20 (strongly localized), decaying to �4 (weakly
localized) at high frequencies up to 10 GHz. In the present
case, the smallest scale of the system �5 cm sets a natu-
ral lower cutoff frequency fc � c�2l � 3 GHz, so that
there are no eigenstates for E , Ec � f2

c . For E ¿ Ec

expanding the above equation in first order, we obtain
I2,sm�E� 
 3 1 B�jE 2 Ecj

m. In Fig. 2 we have plotted
this expression with m � 0.5 and B � 9.0 (obtained by
a best fit) and compared with the experimental data. The
above expression captures the trend of the data. While
an exact comparison with any expression is difficult since
the fluctuations dI2�E� . I2,sm�E�, the analysis illustrates
that we are observing a frequency driven path from strong
to weak localization in a disordered medium in terms of
the IPR.

We have shown that the IPR is an extremely valuable
parameter to study real-space localization in quantum
eigenfunctions. We have demonstrated for the first time a
quantitative analysis of features well beyond universality
due to localization in experimental eigenfunctions. The
observed IPR distribution is strongly non-Gaussian due
to the correlations induced by scattering. The nonlinear
sigma model is in quantitative agreement with the ex-
perimental data for moderate localization. Our work thus
provides experimental support for the approach based
upon quantum diffusion in the localization regime.
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