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Zero-Temperature Equation of State of Quasi-One-Dimensional H2
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We have studied molecular hydrogen in a pure 1D geometry and inside a narrow carbon nanotube
by means of the diffusion Monte Carlo method. The one dimensionality of H2 in the nanotube is well
maintained in a large density range, this system being closer to an ideal 1D fluid than liquid 4He in the
same setup. H2 shares with 4He the existence of a stable liquid phase and a quasicontinuous liquid-solid
transition at very high linear densities.

PACS numbers: 67.70.+n
The experimental finding in 1991 [1] of carbon nano-
tubes opened brand-new possibilities both in technology
and in fundamental physics. The nanoscale provided by
these new materials led to the discovery of novel mechani-
cal, chemical, and electrical properties [2] which suggest
exciting new technological applications. One of the more
relevant features that these new materials have shown is
their large adsorption energy compared with a graphite
planar substrate. Special interest exists in the physisorption
of hydrogen [3–7] in the quest for a fuel cell efficient
enough to be used as a pollution-free energy carrier. In
fact, single wall carbon nanotubes (SWCN) with diameters
of the order of a nanometer have been proposed as one of
the possible candidates to approach the pursued level of
packing [3].

From a more fundamental point of view, the strong con-
finement of particles adsorbed in the carbon channels of a
SWCN bundle, with diameters ranging from 7 to 40 Å and
an aspect ratio of �1000, offers the possibility of an ex-
perimental realization of a quasi-one-dimensional system.
Moreover, if the temperature is low enough, one is deal-
ing with a unique opportunity of studying a nearly one-
dimensional (1D) quantum fluid. In a recent experiment,
Teizer et al. [8] have unambiguously observed the quasi-
one-dimensional behavior of 4He adsorbed in a SWCN
bundle by measuring its desorption rate. On the other hand,
theoretical studies in the limit of zero temperature and
strictly one dimension have proved the existence of a liquid
state with a binding energy in the millidegrees Kelvin scale
[9–11]. The aim of this paper is to extend the theoretical
study to the appealing case of H2 that, besides its techno-
logical relevance, might offer the existence of a homoge-
neous liquid phase at zero temperature. It is worth noticing
that both, bulk and two-dimensional (2D) H2 are solid in
this temperature limit. Liquid phases have been observed
only in theoretical calculations of small clusters [12] and
in 2D geometries with localized alkaline impurities [13].

We have studied molecular hydrogen at zero tempera-
ture in a one-dimensional array and inside a single walled
carbon nanotube (T) of radius R � 3.42 Å [a (5, 5) arm-
chair tube [14] ] that is one of the narrowest experimen-
0031-9007�00�85(11)�2348(4)$15.00
tally obtained [15]. The technique used is the diffusion
Monte Carlo (DMC) method, which has become, in the
past decades, one of the most efficient theoretical tools,
from the microscopic point of view, to deal with quantum
fluids [16,17].

A relevant issue in a microscopic study is the nature of
the interspecies interaction. We have considered the H2
molecules interacting via the isotropic semiempirical po-
tential from Silvera and Goldman (SG) [18] that has been
extensively used in path integral Monte Carlo (PIMC)
and DMC calculations of bulk [19], clusters [12], and H2
films [20]. In the simulations of H2 inside a nanotube, we
consider a cylindrically symmetric potential as suggested
by Stan and Cole [21]. In that simplified model, the in-
teractions between C atoms and H2 molecules are axially
averaged out, resulting in a potential which depends only
on the distance to the center of the tube. It has been
proved [5] that the differences between that smoothed
potential and a potential which is built up as an explicit
sum of individual C-H2 interactions are not significant and
surely smaller than the relative uncertainty in the �s, e�
Lennard-Jones parameters. Considering s � 2.97 Å
and e � 42.8 K, the symmetric potential felt by a H2
molecule in a (5, 5) tube has a depth of 42e, 3 times
larger than the attraction of the same molecule in a flat
graphitic surface.

The use of importance sampling in DMC requires the
introduction of a trial wave function that guides the diffu-
sion process to relevant regions of the walkers phase space.
In the 1D system, we consider

C1D�R� � CJ�R� , (1)

with CJ�R� �
Q

i,j exp�2 1
2 � b

rij
�5� being a Jastrow wave

function with a McMillan two-body correlation factor. In-
side the nanotube, H2 molecules interact with the walls
of the cylinder and therefore we have added an additional
one-body term,

CT�R� � CJ�R�Cc�R� , (2)

with Cc�R� �
QN

i exp�2c r2
i � and ri being the radial
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distance of the particle to the center, to avoid the hard
core of the H2-nanotube interaction.

Theoretical calculations of 1D 4He agree in predicting a
liquid-solid phase transition at high linear densities [9–11].
This transition, which is only possible at absolute zero
temperature, looks like a nearly continuous one without
a measurable difference between the melting and freezing
densities. Following the same procedure as in our previ-
ous work in helium [10], we have explored the existence
of such a transition in H2. In this ordered phase, we mod-
ify the trial wave function in both the 1D system and in-
side the nanotube by multiplying them by a z-localized
factor Cs�R� �

QN
i exp�2a�zi 2 zis�2�. The sites zis are

equally spaced points in both the 1D line and the axial di-
rection of the nanotube.

The variational parameters a, b, and c have been opti-
mized by means of variational Monte Carlo calculations.
In the liquid phase and near the equilibrium density
b � 3.759 Å, with a slight increase with density (at
l � 0.277 Å21, b � 3.789 Å), whereas c � 4.908 Å22

is kept fixed for all l values. In the solid phase,
b � 3.404 Å, a � 0.799 Å22, and c � 5.136 Å22, with
a negligible l dependence in the region analyzed.

The possible existence of a liquid-solid phase transition
at high linear density has been studied in both 1D and
inside a narrow nanotube. In Table I, results for the en-
ergy per particle of both systems are reported for the liq-
uid �a � 0� and solid �a fi 0� phases. The comparison
between the energies of both phases at the same density
shows that their difference changes sign when going from
l � 0.312 Å21 to l � 0.304 Å21 in 1D and from l �
0.320 Å21 to l � 0.312 Å21 in the tube. Above these
densities, the system prefers to be localized in a solidlike
structure with a difference jE�s� 2 E�l�j that increases
with l. When the density decreases, the liquid phase is
energetically preferred and again the size of the difference
jE�s� 2 E�l�j increases when l diminishes. The density
value at which this difference becomes zero is estimated
to be l � 0.309 Å21 in 1D and l � 0.315 Å21 in the
tube, being impossible to distinguish between freezing and
melting densities. As previously studied in 4He [10] it ap-
pears to be a nearly continuous phase transition located at
a density close to the inverse of the location of the mini-
mum of the respective pair potential (r21

m � 0.337 Å21

vs ls � 0.358 Å21 for helium, and r21
m � 0.291 Å21 vs

ls � 0.309 Å21 for molecular hydrogen).
Inside the nanotube, the energies are much more nega-
tive that in 1D due to the strong attraction of the carbon
substrate: the binding energy of a single H2 molecule in
the tube is Eb � 21539.87 6 0.11 K. Looking at the
T-energy results contained in Table I, one realizes that,
also in this case, a transition occurs at a density very close
to the 1D one. It is remarkable that, both in 1D and T,
H2 remains liquid below the liquid-solid transition density,
and thus a homogeneous liquid phase at zero pressure is
predicted. That result contrasts with the theoretically and
experimentally well-established solid phase in 3D [22] and
the 2D solid phase predicted by a PIMC calculation [20].

The equations of state of liquid H2 near the equilibrium
density for both the 1D and T systems are shown in Fig. 1.
In order to make the energy scales compatible we have
subtracted the single binding energy Eb to the T results.
The lines in the figure correspond to the third-degree poly-
nomial fits in the form

E
N

� e0 1 A

µ
l 2 l0

l0

∂2

1 B

µ
l 2 l0

l0

∂3

. (3)

The best set of parameters e0, l0, A, and B are reported
in Table II. The equilibrium densities in both systems are
the same considering their respective uncertainties but the
binding energy e0 � e�l0� is larger when H2 is inside the
nanotube. The difference between the 3D geometry (T)
and the idealized one (1D) can be quantified by means of
the adimensional parameter

DT �
�ET 2 ET

b � 2 E1D

�ET 2 ET
b �

. (4)

In the present system, around l0, DT � 3.5% which em-
phasizes the proximity between the real system and the
idealized one. It is worth noting that in 4He inside the
same nanotube we obtained DT � 90% [10], and there-
fore H2 seems a better candidate to experimentally achieve
a 1D condensed phase. That significant difference between
helium and hydrogen may be understood by taking into ac-
count the fact that the difference between the hard-core size
of the C-He interaction �sC-He � 2.74 Å� and the C-H2

interaction �sC-H2 � 2.97 Å� is magnified in a (5, 5) tube
because of its small radius �R � 3.42 Å�.

In Fig. 2, the density dependence of the pressure for
both the 1D and T systems is reported from equilibrium
up to the liquid-solid transition density. As a matter of
comparison, the same results for 4He are also plotted.
TABLE I. Energies per particle in K at high linear densities l for 1D and T H2 systems.
a � 0 and a fi 0 correspond to the liquid and solid phases, respectively.

l �Å21� E�N �1D, a � 0� E�N �1D, a fi 0� E�N �T, a � 0� E�N �T, a fi 0�

0.329 98.083 6 0.034 97.963 6 0.016 21453.99 6 0.06 21454.69 6 0.04
0.320 72.567 6 0.013 72.523 6 0.007 21476.74 6 0.05 21476.88 6 0.01
0.312 53.264 6 0.010 53.227 6 0.010 21493.790 6 0.019 21493.720 6 0.002
0.304 38.581 6 0.018 38.636 6 0.014 21506.570 6 0.03 21506.540 6 0.011
0.290 19.203 6 0.010 19.260 6 0.003 21523.730 6 0.017 21523.600 6 0.02
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FIG. 1. Energy per particle of H2 as a function of the linear
density. Open squares are the 1D results, and filled squares
are the T energies having subtracted the binding energy of a
single molecule Eb . The lines are the result of the polynomial
fit [Eq. (3)] with the optimal parameters reported in Table II.

Both in H2 and 4He the pressure increases faster in the 1D
geometry �Pl� than in the tube (P) due the transverse
degree of freedom that particles have in the latter case
(notice the proportionality between the scales of P
and Pl in Fig. 2, Pl�P � pR2). At a given density l,
the difference between the T and 1D pressures is smaller
in H2 than in 4He. For example, at the respective transi-
tion densities that difference is more than one and one-
half times larger in helium than in hydrogen. Therefore,
the one dimensionality of H2 inside the nanotube is well
maintained in all of the liquid regime, in contrast with
4He in which the departure from such an idealized model
already appears around the equilibrium density and in-
creases significantly with l. Also apparent from Fig. 2
is a much smaller compressibility in H2 than in 4He. In
the 1D geometry at l � l0 the velocity of sound in H2 is
c � 736.1 6 0.2 m�sec to be compared with c � 7.98 6

0.07 m�sec in 4He at l � l0�4He� � 0.062 Å21. The
velocity of sound drops to zero at the spinodal point that,
according to the equation of state (Table II), is located at
densities 0.210 6 0.001 Å21 and 0.209 6 0.001 Å21 for
the 1D and T systems, respectively.

TABLE II. Parameters of the equation of state [Eq. (3)] for
the two systems studied.

Parameter 1D H2 H2 in a tube

l0 �Å21� 0.2191 6 0.0004 0.2200 6 0.0006
e0 �K� 24.834 6 0.007 21544.880 6 0.016
A �K� 65.7 6 3.6 69.7 6 4.9
B �K� 556.0 6 46.6 429.7 6 73.9
x2�n 1.98 1.5
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FIG. 2. 1D (Pl, solid line) and T (P, dashed line) pressures
for H2 and 4He as a function of the linear density.

The spatial structure of molecular hydrogen in the 1D
array and inside the nanotube has also been analyzed by
means of the two-body radial distribution function g�z�
and its Fourier transform, the static structure factor S�k�. In
Fig. 3, the 1D results for g�z� are reported at both the equi-
librium density for the liquid phase and in the solid-liquid
transition region �l � 0.312 Å21�. The corresponding re-
sults for H2 inside the nanotube are indistinguishable from
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FIG. 3. Two-body radial distribution function for 1D H2 at
equilibrium (solid line) and at the liquid-solid transition density
(dashed line).
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FIG. 4. Static structure function for 1D H2 near equilibrium
(open symbols) and at the liquid-solid transition density
(solid symbols).

the 1D results in the scale shown in Fig. 3. The solid g�z�
shows a strongly localized order around the equally spaced
z sites that decreases very slowly when z increases. The
result for g�z� at l � l0 manifests the nature of a dense
fluid with an appreciable structure that decreases faster
than in the solid but shows residual ordering up to large
z distances.

The significant differences in structure between the low
and high density regimes are reflected even more clearly
in the static structure factors. In Fig. 4, the results for
S�k� corresponding to the same densities reported in Fig. 3
are shown. At high density, a characteristic result for a
solid phase is obtained with regular k spacing according
to the only periodicity allowed by the 1D geometry. At
l � l0, S�k� shows a first peak, reflecting the localization
observed in g�z� (Fig. 3), and a subsequent very smoothed
maximum, as expected in a homogeneous liquid phase.

In conclusion, we have studied the zero-temperature
equation of state of molecular hydrogen in a 1D geo-
metry and inside a narrow nanotube by means of the dif-
fusion Monte Carlo method. The 1D calculation predicts
the existence of a self-bound system with a binding energy
of 24.8 K and a quasicontinuous liquid-solid transition at
high density. The comparison with a real system, hydro-
gen in a nanotube, points to a close proximity between its
properties and the ones of the 1D limit. The prediction of
a liquid H2 phase inside a (5, 5) carbon nanotube is one of
the main conclusions of this paper. The high one dimen-
sionality of this system would preclude a superfluid be-
havior but the use of wider nanotubes can provide a proper
setup to observe the long-desired superfluidity in molecu-
lar hydrogen. We expect that this work could encourage
experimentalists to explore such a intriguing possibility.
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