
VOLUME 85, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 11 SEPTEMBER 2000

2344
Dimers in Two-Dimensional 3He-4He Mixtures
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Ground-state properties of two-dimensional 3He-4He mixtures are studied at zero temperature. A
general argument based on the long-ranged attraction of the phonon exchange is given for the existence
of 3He dimers in low-concentration mixtures with 4He. The binding energy of dimers ranges from milli-
to microkelvins with increasing 4He density. By comparing the 3He impurity chemical potential in 4He
with the one in pure 3He we conclude that at finite pressures 3He dimers form a mixture with 4He with
a maximum solubility of �3%.

PACS numbers: 67.60.–g, 67.57.Pq, 68.15.+e, 68.35.Rh
The first superfluid layer of a 4He film on a smooth
substrate forms a nearly two-dimensional (2D) self-bound
liquid. At very low densities and absolute zero tempera-
ture, the homogeneous liquid condenses into patches sur-
rounded by gas or vacuum. At high densities the liquid
either solidifies or a second atomic layer begins to form,
depending on the strength of the substrate potential. 3He
atoms in two dimensions form a gas in the density range
of interest in this paper, although the interaction between
two atoms is sufficiently attractive to bind isolated pairs
of 3He atoms with opposite spins with an energy of about
20 mK. Atomic monolayers of 3He and 4He mixtures can
be realized in strongly attractive substrates and they form
a quasi-two-dimensional mixture [1], but low temperature
experiments have left room for speculations on the quan-
tum nature of the 3He component in the mixture. Over
the years homogeneous atomic mixing at finite pressure
[2], Cooper pairing [3], dimer formation [4], and phase
separation into self-bound 2D Fermi liquid [5] have been
suggested.

We present in this work a careful theoretical analysis of
the phase diagram of two-dimensional, low concentration
3He-4He mixtures. We evaluate the effective 3He-3He in-
teraction and show that the long-ranged attraction induced
by phonon exchange is, in the dilute limit, sufficient to
bind 3He dimers. We also give an estimate of the maxi-
mum solubility by comparing our calculated chemical po-
tentials with recent Monte Carlo results for the pure 2D
3He gas. We use the variational approach based on the
Jastrow-Feenberg ansatz for the wave function [6,7] plus
correlated basis functions (CBF) perturbation theory to in-
finite order. The method gives accurate results for helium
fluids both in two and three dimensions.

The scattering equation for two 3He impurities with op-
posite spins in liquid 4He can be written in the form of a
Schrödinger equation,∑

2
h̄2

m3
=2 1 Vscat�r� 2 Eb

∏
f�r� � 0 , (1)

where m3 is the bare 3He mass and Vscat�r� � V �r� 1

wind�r� 1 DVe�r� is the effective potential. The first term
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is the bare interaction [8] and the second term is the
phonon-induced interaction. DVe�r� is a quantitatively im-
portant contribution coming from higher order correlations
and “elementary diagrams” [7]. The quantities entering the
effective interaction are accurately known from the prop-
erties of pure 4He and one 3He impurity in 4He; however,
a number of exact statements can be made that do not rely
on the quality of generically approximate methods.

The longest-ranged part of the interaction comes from
the phonon-induced interaction wind�r� which can be ex-
pressed in momentum space in terms of the 4He-4He and
3He-4He structure functions, S�44��k� and S�34��k�:

w̃ind�k� � 2
1
2

�S�34��k��2

S�44��k�

∑
h̄2k2

m3
1

h̄2k2

2m4S�44��k�

∏
. (2)

The long-wavelength expansion of the phonon-induced
potential w̃ind�k� is

w̃ind�k� � 2b2m4c2 1 const 3 k2

2
h̄3b2m4

4m3
3c

k3 1 O �k4� as k ! 0 1 . (3)

Here b � S�34��01� is the volume excess factor of 3He
atoms introduced in Ref. [9], c is the speed of sound, and
m4 and m3 are the masses of helium isotopes. The first odd
power in the above expansion is k3; this power determines
the longest-ranged part of the interaction,

wind�r� � 2
9h̄3b2m4

8prm3
3c

1
r5 1 O �r26� as r ! ` . (4)

Evidently, the longest-ranged part of the effective interac-
tion is attractive. This is, in two dimensions, sufficient
[10] for having a bound state of the Schrödinger equation.
Hence, the asymptotic form (4) proves that the lowest en-
ergy solution of Eq. (1) is a weakly bound state.

The proof of the existence of a dimer mentioned above
says nothing about the magnitude of the binding energy
and its dependence on the density of the host liquid. In
fact, the much shorter-ranged contribution DVe�r� causes
a quantitatively significant increase of the dimer bind-
ing energy, which is strongly density dependent as shown
in Fig. 1. At zero pressure, which corresponds to the
© 2000 The American Physical Society
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FIG. 1. The binding energy of a dimer of 3He atoms within
two-dimensional 4He in logarithmic scale as a function of
density.

density r � 0.043 Å22, the binding energy is �26 mK.
The binding energy decreases with increasing density; the
reason for this is that the attraction of the asymptotic tail of
the phonon-induced interaction decreases since the volume
excess factor decreases and the speed of sound increases
with increasing density. Near the solidification density os-
cillations of the effective interaction build up; they extend
farther and farther out into the tail and also reduce the
binding. Since the dimer is very weakly bound, its wave
function decays very slowly. Figure 2 shows the wave
function for three different densities. They show a maxi-
mum at �4 Å which coincides with the first maximum of
the radial distribution function of the pure 4He.

We have shown so far that the dimerized phase is, in
the low concentration limit, energetically favorable over
the dilute atomic mixture. Next, we need to determine
the regime where the dimerized mixture is favored over
a phase-separated configuration. In a stable mixture, the
chemical potential of the 3He component, m

mix
3 �P, x�, at
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FIG. 2. The square of the 3He wave function for three different
4He densities as marked in the figure.
a given pressure P, must be lower than that of pure 3He
at the same pressure; furthermore, m

mix
3 �P, x� must be an

increasing function of concentration.
We start by calculating the 3He chemical potential in

the single impurity limit, m
I
3�P�, and comparing that with

Monte Carlo simulation results [11] for pure 3He. The
difference between the chemical potentials, Dm3�P� �
m

I
3�P� 2 m

pure
3 �P�, is shown in Fig. 3 as a function of

pressure. At zero pressure the 3He impurity chemical po-
tential is positive, �1 0.13 K, whereas the chemical po-
tential of the pure 3He gas approaches zero proportional
to

p
P. This means that no stable mixture can exist at

zero pressure. However, the chemical potential in the pure
phase increases faster than for the impurity, and the mix-
ture becomes stable for pressures P . 0.002 dyn�cm. The
maximum energy difference in the chemical potentials is
�2 0.25 K at P � 0.1 dyn�cm. In passing, we note that
this energy difference is surprisingly similar to that of the
three-dimensional mixture.

The accuracy of our results can be estimated as follows:
An upper bound for the impurity chemical potential m

I
3 can

be calculated [12] by using the ground-state wave function
of N 1 1 4He atoms as a trial wave function for the system
of N 4He atoms and one 3He impurity:

mI
3 #

µ
m4

m3
2 1

∂
�T4	
N

1 m4 , (5)

where �T4	 is the kinetic energy of the 4He component
and m4 is the chemical potential of the pure 4He. Both
quantities can be obtained from simulation data [13] with-
out recourse to semianalytic theories, but of course also
within our computational scheme. That way, we can reas-
sure the accuracy of our calculations in two ways: first, by
asserting that our estimate from Eq. (5) for the 3He chemi-
cal potential agrees sufficiently well with what one would
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FIG. 3. The difference between the 3He impurity and the pure
3He gas chemical potentials is shown as a function of pressure.
The solid line shows the result of the full calculation. The short
dashed line is our estimate using Eq. (5), and the long dashed
line is the corresponding estimate from Monte Carlo simulations
[13] of pure 4He.
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obtain from Ref. [13] and, second, the relevant quantity is
only the increase of the 3He binding due to improving the
wave function, and the energy differences gained by that
should be more accurate than the absolute energies.

The estimate (5) yields an upper limit for the impurity
chemical potential which is less than 0.1 K above m

pure
3 �P�

for pressure P . 0.002 dyn�cm as shown in Fig. 3. Our
result for the kinetic energy �T4	 gives a slightly higher
upper limit. The difference between our full calculation
and the upper limit (5) tells that the gain in energy is about
0.3 K when also the impurity correlation functions are op-
timized. From that we can conclude that the mixture is
stable for pressures P . 0.002 dyn�cm and phase sepa-
rates at very low pressures.

The above analysis applies to the dilute limit. How-
ever, both an increasing number of dimers and Fermi
statistics screen the pairing interaction at finite 3He con-
centration, and a homogeneous atomic mixture will even-
tually form. If such a mixture is stable, we can apply
our theory [7] of mixtures. The theory contains optimized
Jastrow-Feenberg pair and triplet correlations in all chan-
nels and the hypernetted chain summation of diagrams
(FHNC-EL), along with corrections within infinite order
CBF perturbation theory. In particular, the Euler equa-
tions for optimizing the correlations have no solution if
the system is unstable against infinitesimal density or con-
centration fluctuations. Consistent with the fact that we
find a dimer state in the zero concentration limit, we find
that the homogeneous mixture becomes unstable against
infinitesimal concentration fluctuations when the 3He con-
centration is lowered. We show in Fig. 4 the onset of this
instability as a function of density. It is quite tedious to
approach the instability because the correlation length di-
verges at that point, and we must rely on extrapolations
from higher concentrations. Two independent calculations
give slightly different results: A lower limit of about 1% is
found in the FHNC-EL approximation, whereas the more
advanced CBF calculations predict a somewhat larger criti-
cal concentration of about 3%.

The stability of the mixture requires that the chemical
potential must be an increasing function of concentration.
For that we need the enthalpy in the mixed phase

H�P, x� �
E�P, x�

N
1

PV �P, x�
N

, (6)

which defines the concentration dependence of the 3He
chemical potential at constant pressure,

m3�P, x� � H�P, x� 1 �1 2 x�
≠H�P, x�

≠x
. (7)

Here E�P, x��N is the energy/particle of the mixture and
V �P, x� is its volume.

Our results for the concentration dependence of
m3�P, x� for three different pressures are shown in Fig. 5.
We have subtracted the pure 3He chemical potential
2346
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FIG. 4. The figure shows the critical concentrations where the
atomic mixture becomes unstable as a function of density. The
solid and the long dashed line show the interpolated CBF and
FHNC-EL results, respectively; the black dots give the maxi-
mum solubility concentrations.

in order to highlight the details. The solid lines are
the results of our full mixture calculations. The CBF
corrections are not visible in the scale of this figure. Short
dashed lines leading to the results in the impurity limit
are interpolations through the unstable regime as a guide
to the eye.

The maximum solubility of 3He into 4He can be deter-
mined by comparing the chemical potentials in the mix-
ture and pure 3He gas [14]. Although the calculations
for atomic mixtures are not rigorously applicable for the
dimerized phase, an interpolation of the chemical poten-
tial for finite concentrations and the single-impurity limit
can give plausible estimates for the critical concentra-
tions. These can be read off from Fig. 5 as the points
where the curves cross the x axis and the results are
shown in Fig. 4. The maximum solubility is �2.6% at
the pressure of 0.1 dyn�cm. It diminishes to zero when
P , 0.002 dyn�cm as already pointed out, and also near
the solidification when P . 0.5 dyn�cm. By comparing
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FIG. 5. The difference between the 3He chemical potentials in
the mixture and pure 3He gas as a function of concentration at
pressures indicated by labels in units �dyn�cm�. The mixture
results (full lines) are extrapolated to the impurity results at zero
concentration.
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the critical concentrations from the global and infinitesi-
mal stability considerations, we conclude that an atomic
mixture would be supersaturated and can exist only un-
der favorable experimental conditions. Any little seed can
trigger the phase separation as is already well known ex-
perimentally in three-dimensional mixtures [14].

Our interpolation between the zero impurity limit
and the finite-concentration atomic mixture results show
that m3�P, x� is indeed an increasing function of the
concentration. This is consistent with qualitative consid-
erations: For a first estimate of the small concentration
behavior we may assume that the volume V �P, x� �

1 1 x�b�P� 2 1��V �P, 0� is a linear function of concen-
tration and the volume excess factor b�P� depends, as
in three-dimensional mixtures, only on the pressure. In
the two-dimensional fluid, the Fermi energy of the quasi-
particles, EF � x2prh̄2��2m3�, has the same quadratic
concentration dependence as the 3He-3He interaction term.
Following Ref. [9], we can estimate the interaction term
from the volume excess factor and the speed of sound,
EV � 2�b 2 1�2m4c2x2�2. Inserting typical values
at zero pressure, r � 0.043 Å22, m4c2 � 4.2 K, and
b � 1.5 from Monte Carlo and our impurity calculations,
we find that the quasiparticle Fermi energy is more than
a factor of 2 larger than the interaction energy. Thus
we conclude that m3�P, x� is an increasing function of
concentration indicating a locally stable mixture.

Our analysis of the phases of rigorously two-
dimensional 3He should shed some light on the physics of
mixture films and on the consequences of dimensionality
encountered in these systems. In reality, mixture films
are quasi-two-dimensional systems where the motion
of the particles into the third dimension is restricted,
but not completely suppressed, by a holding potential.
The dimer binding energy can be enhanced significantly
[15]—compared to the purely two-dimensional phase— if
the particles are in an external potential whose width is of
the order of the range of the bare interaction. This is the
case for realistic atomic monolayers; hence one should
reassess the validity of the rigorously two-dimensional
approximation. Moreover, adsorbed films show, at suf-
ficiently high surface coverages, the onset of a ripplon
excitation [16] which has a much lower energy than the
two-dimensional phonon. Ripplon exchange should be
particularly relevant for mixture films where the 4He
component has more than one atomic monolayer, but
where the 3He is still sufficiently dilute to be considered
a monolayer. Both of these effects enhance the dimer
binding.

A reduction of the dimer binding energy can be expected
from Fermi statistics since Eq. (1) should be replaced by
the Bethe-Goldstone equation at finite concentrations, and
Bashkin’s argument [4] on existence of dimers is no longer
rigorous. We shall address these issues in further work.
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