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Matter between contiguous crystallites is assimilated to a thin elastic plate immersed in a different
elastic medium. It is shown that a shear stress exceeding a critical value should corrugate the boundary
and induce periodic normal stress fields in the two adjacent crystal surfaces, which cause motion of
vacancies in closed loops between the two crystals. The consequent cyclic transport of atoms in the
opposite sense determines crystal sliding at a temperature dependent relative speed. Most of the phe-
nomenology of superplastic allows follows in a quantitative manner.

PACS numbers: 62.20.Fe, 46.70.De, 61.50.Ks, 61.72.Mm
Superplasticity constitutes a fascinating subject and a
challenge for condensed matter theorists because the pre-
cise microscopic mechanism that makes solid materials be-
have in many respects as fluids, without leaving the solid
structure, is still under discussion.

The most salient feature of superplastic solids is the abil-
ity to undergo extensive, neck-free, tensile deformation
prior to fracture. Instead of failing after a plastic defor-
mation of a few percent, the sample subjected to a ten-
sile stress beyond the elastic limit enters the superplastic
regime characterized by uniform strains of thousands of
percent. Elongations of 10 20 times are not infrequent in
superplastic alloys and a record strain of 80 times has been
reported for an aluminum bronze [1]. The phenomenon is
realized in a range of temperatures close to half the melt-
ing point in kelvins for strain rates in a range that starts at
about 1024 1022 s21, depending on the material.

Most theoretical studies give a power law for the rela-
tion between the strain rate and the applied stress. How-
ever, this disagrees with experiments if the exponent is
assumed constant. The variation of the exponent is as-
cribed to changes in the accommodation mechanism of
grain misfits [2,3]. Although superplastic materials may
be very different, they all exhibit a common deforma-
tion phenomenology. This suggests that superplasticity
is caused by a very basic physical mechanism which yet
remains unknown.

Although based on the same general principles, the ex-
planation of the superplastic flow put forward here is rather
different from the traditional approaches. It is consistent
with a theory published recently by Lagos and Duque that
produces excellent agreement with experiments over the
whole range of strain rates [4–6]. However, the present
approach provides deeper insight into the phenomenon.

Superplastic grain boundary sliding seems connected
with a recent study of interfaces in solids [7]. By Monte
Carlo simulation and analytical treatment it is shown that,
in general, ideally planar structures in bulk crystalline
materials become rough when subjected to in-plane shear
forces [7]. The system undergoes an elastic instability
followed by atomic transport driven by the induced stress
fields. This effect is closely related to Asaro-Tiller-
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Grinfeld instability, i.e., stress induced buckling of solid
surfaces into trenches or islands [8–10], and with the
spontaneous roughening of thin films produced by strong
in-plane stresses arising from lattice mismatch with the
substrate [11–16].

Roughening of stressed surfaces has become a very ac-
tive field of physical research. This phenomenon is well
established by theory, computer simulation, and experi-
ment. Experimental observations of the surface instabili-
ties [13,16,17] provide indirect experimental support to the
predicted stress induced roughening of bulk interfaces and
grain boundaries [7], which has the same physical origin
but is of more difficult experimental detection.

The structure of the derivation is as follows: (i) First,
it is shown that the boundary separating two crystallites
may become elastically unstable and undergo a periodic
deformation when subjected to an overcritical shear stress.
The main consequence of boundary corrugation is the rise
of periodic normal stress fields in the two crystal surfaces.
(ii) Second, the effect of this periodic stress field on the
thermodynamic equilibrium of vacancies in the interfaces
between the two crystals and intergranular matter is exam-
ined. It is well known that grain boundaries are efficient
sources, or sinks, for vacancies [18]. It will be shown that
the induced stresses cause loop motion of vacancies across
the grain boundaries, which provides not only an accom-
modation mechanism, but also, and primarily, the driving
force for crystal sliding.

We now examine the first point of the derivation in de-
tail. Adjacent crystallites are separated by the grain bound-
ary, which is a layer of several atomic distances thick
that smoothly matches the two crystal structures. When
the system is subjected to external forces its mechanical
analysis must distinguish intergranular and crystalline mat-
ter as separate units because they have slightly different
mechanical properties [19,20]. Intergrain matter will be
assimilated into a thin elastic plate immersed in a different
elastic medium representing the crystals.

Consider now two contiguous crystallites exerting shear
forces on the grain boundary between them. The shear
forces are parallel to the interfaces. One can model the
system as an elastic plate of thickness d1, width b, and
© 2000 The American Physical Society
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length L, subjected to a shear stress t and, for the sake of
generality, axial compressive forces of strength F applied
to the edges of size b. Both the compressing and shear
forces are parallel to the main direction, associated with
the length L. Only the main dimension and transversal
deformations, normal to the plane of the plate, will be
considered. The magnitudes b and L will cancel in the
final solution.

The plate modeling the grain boundary is immersed in
an elastic medium that represents crystalline matter. This
way, if a section dx of the plate, at distance x from the
left end along the main dimension, undergoes a transversal
shift y�x�, then the elastic medium will exert on it a resti-
tutive force 22ay�x�bdx, where 2a is a constant propor-
tional to the Young modulus of the crystals. If F � t � 0,
the plate remains plane.

This is a problem of material mechanics that can be
solved using the general equation originally attributed to
Euler, commonly used by engineers to calculate shapes of
loaded beams,
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where E denotes Young’s elasticity modulus of the plate
and I is the moment of inertia of the transversal section.
The function M�x� stands for the moment of the forces
applied in the interval �0, x� with respect to the point x of
the plate. The left-hand side of Eq. (1) is the curvature at
x. To be more specific with regard to our problem,
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where y0 � y�0� and M0 is an external moment applied at
x � 0.

Assume that y0�x� ø 1 for any x in �0, L�. Equation (2)
then admits the solution

y�x� � d sin�kx� . (3)

By replacing in Eq. (2) it is found that M0 � y0 � 0,
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� 0 , (4)

and

td1 �
2ad

k
. (5)

Equations (4) and (5) determine the periodicity
2� � 2p�k and amplitude d of the solution.

However, Eq. (4) gives real solutions for k only if F $

2
p

2abEI � Fc. Hence the existence of periodic solu-
tions demands a compressing force F parallel to the bound-
ary and greater than the critical value Fc. As discussed
below in the paragraph after Eq. (7), such force is highly
expected in stressed real systems. The constant k also has
a minimal value, given by

k2
min �

s
2ab
EI

, (6)

which determines a maximum for the semiperiod �.
The two cases t � 0 and a � F � 0 can be solved in
general and are useful to gain insight into the behavior of
the system.

Replacing [in Eq. (6)] a � E0�d and the explicit ex-
pression for the moment of inertia I � bd3

1�12, where E0

is the Young modulus of the crystal and d is the grain
size, one finds that the semiperiod � � p�k of the peri-
odic overcritical solution is bounded by

��max� � p

µ
dd3

1E
24E0

∂1�4

. (7)

Considering E0 � E, d � 1023 cm, and estimating the
grain boundary thickness as ten atomic distances, d1 �
3 3 1027 cm, and Eq. (7) gives ��max� � 1026 �cm� �
1022 �mm�.

In summary, an ideal grain boundary subjected to shear
stress and a concurrent compressing force F, parallel to the
plane of the boundary and greater than the critical value Fc,
should periodically distort the boundary with semiperiod
�. A compressing in-plane force F is expected to occur in
any real grain boundary under shearing, as a consequence
of geometric imperfections in the crystallite surfaces. In
effect, a pure shear exerted by the two crystallites on the in-
tergrain region is partially transformed into in-plane com-
pression by interface steps, small second phase inclusions,
or triple junctions.

The most important result for what follows is that the
periodic distortion of the boundary induces a periodic nor-
mal stress field

s1�x� � 6ad sin

µ
p

�
x

∂
(8)

in the surfaces of the two adjacent crystallites. The posi-
tive sign applies to one of the crystal surfaces and the
minus sign applies to the other one. In effect, for each
value of x the stresses in the two crystal surfaces have
opposite signs. If one of the crystals is compressed by the
transversal displacement of the grain boundary then the
other one is tractioned. This point is mentioned because it
has important consequences.

Let us now discuss point (ii), stated previously. It is well
known that grain boundaries may trap or release lattice va-
cancies very efficiently. This can be understood from the
widely accepted idea that intergranular regions essentially
consist of ordered crystalline matter with a high density
of dislocations [18]. Assimilating a dislocation to a plane
array of vacancies, one can think of the grain boundary
as a particular phase of condensed vacancies in thermody-
namic equilibrium with the vacancies diffusing through the
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crystallites, which constitute the free phase. The equilib-
rium equation is [4]

h�1 2 h�g21 �
1
2 exp�2beB�s�� , (9)

where h is the atomic concentration of vacancies diffusing
freely in the crystallites, g is the number of atomic sites
per vacancy in the grain boundary, eB�s� is the binding
energy of a vacancy in the grain boundary relative to the
energy of a free defect, b � 1��kBT �, kB is the Boltzmann
constant, and T is the absolute temperature. Equation (9)
simply expresses the detailed balance of vacancy transfers.

The equilibrium concentration h of crystal vacancies
depends on the stresses through the dependence of the
condensation energy eB on them. In general, the energy
associated with a vacancy depends on the positions of the
surrounding atoms. It is reasonable to assume that if the
crystal is strained eB will vary mostly with the volume
dilation, and angular changes will have a minor effect.
In an isotropic solid the elastic dilation is connected by
Hooke’s law with the hydrostatic pressure s � �sxx 1

syy 1 szz��3, where sij are the components of the stress
tensor, hence eB � eB�s�.

With Eq. (9) in mind, consider what happens when the
stress fields of Eq. (8) are exerted on the crystal surfaces
adjacent to the grain boundary. By Eq. (9) the equilibrium
concentration h � h�s 1 s1�x�� varies periodically in
each crystal surface and hence the intergranular region will
release and capture vacancies in alternate sectors of length
�. On the other hand, the equilibrium concentration in the
two sides of the corrugated grain boundary are h�s 1 s1�
and h�s 2 s1�. The consequent transversal concentration
gradient determines a transversal flow of vacancies across
the grain boundary. Vacancies evaporate from one side
while condensing at the other side of the boundary. As s1,
the transversal flux density vector varies periodically with
x and changes sign each semiperiod �.

Contiguous opposite currents across the boundary close
by diffusional flow through the crystallites. The stress
variation along the x direction induces a periodic concen-
tration gradient in the longitudinal direction and, conse-
quently, diffusive flow parallel to the boundary. The drift
velocities in the two crystals have opposite senses, and the
stream lines are essentially closed loops crossing the grain
boundary and involving both crystals. In this manner, the
periodic normal stresses given by Eq. (8) determine the
transport of vacancies in a succession of closed paths be-
tween the two crystals. Focusing now on just the crystal
surfaces, vacancies flow continuously along them, and the
resulting lattice diffusion in the two surfaces has opposite
senses. This involves a relative motion, or sliding, of the
two adjacent crystals.

Next the mechanism described above is examined in a
quantitative way to determine the relative speed between
adjacent crystallites. By taking the gradient of Eq. (9) and
inserting the same equation into the resulting expression,
one obtains
2334
1 2 gh

h�1 2 h�
Dh � 2b=eB�s� . (10)

By replacing deB�ds � 2V� and �Jy � 2�D�V0�=h,
where �Jy is the vacancy density of flux, D is the diffu-
sion coefficient, and V0 is the atomic volume, Eq. (10)
becomes

�Jy � 2
D

kBT
V�

V0

h�1 2 h�
1 2 gh

=s . (11)

Identifying 2 �Jy with the density of flux for lattice diffu-
sion �Jlattice � �y�V0, where 1�V0 represents the atomic
density and �y is the mean atomic drift velocity, it is
found that

�y �
D

kBT
h�1 2 h�
1 2 gh

V�=s . (12)

The derivative of the normal stress s1 induced in the
surface of contiguous crystals is periodic with amplitude
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∂
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Replacing in Eq. (12), and multiplying by 2 to account
for the opposite motion of the surfaces with respect to the
grain boundary, one obtains the relative speed of the sliding
surfaces

Dyi0 �
p2d1

�2

D
kBT

h�1 2 h�
1 2 gh

V�ti0z0 ,

Dyz0 � 0 �i0 � x0, y0� ,
(14)

where ti0z0 , i0 � x0, y0, are the components of the shear
stress expressed in a frame of reference that has the x0y0

plane in the boundary surface.
The task is now to transform this result into a practical

equation relating the flow stresses with the strain rates. The
procedure will be described in general because it is rather
technical. The only physical input is the equation �́ iz �
�Dyi	z�d, i � x, y, z, which relates the strain rates �́ ij

with the components of the relative sliding velocities of the
crystallites. Here d represents the grain size and the frame
of reference xyz is unique for all of the crystallites. Dyi

represents the projection of the relative velocity given by
Eq. (14) on the i axis of the main frame of reference xyz.
The symbol �· · ·	z means the average over all orientations
of the boundary plane that keep the normal vector in the
subspace z . 0.

By choosing the axes of xyz parallel to the principal di-
rections of the stress tensor, the projections and average
are accomplished with the help of rotation matrices. Al-
though fairly laborious, the procedure is straightforward
and yields the simple result
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where sx , sy , and sz are the principal stresses, s �
sx 1 sy 1 sz , and use was made of the activated
expression D�T � � D0 exp�2ea��kBT �� for the dif-
fusion coefficient. Also it was assumed a linear
dependence eB�s� � eB 2 V�s of the condensation
energy with the normal stresses. As expected, �́ xx 1
�́ yy 1 �́ zz � 0, which means that volume remains un-
changed in the deformation. For uniaxial tensile stresses
s � sz , sx � sy � 0, Eq. (15) reduces to

�́ � C0
V�s

kBT
exp

µ
2

e0 2 V�s

kBT

∂
, (16)

where e0 � ea 1 eB and C0 is the preexponential factor
in Eq. (15).

Figure 1 shows the uniaxial tensile stresses s � sz ap-
plied to samples of the particularly stable alloy Al-7475,
deformed at constant stress rates �́ � �́ zz at four tempera-
tures [21]. The solid curves illustrate the results given by
Eq. (16) with C0, e0, and V� chosen to fit the data. The
force F grows at the expense of the shear force exerted on
the grain boundary. Thus, the critical value Fc determines
a threshold stress sc. In Fig. 1, sc � 0.

From the value C0 � 1.1 3 109 s21 given by the fit
shown in Fig. 1, one can estimate the semiperiod � of
the grain boundary corrugation. It is found that � �
1026 �cm�, which agrees well with the estimate obtained
previously from Eq. (7).

The dependence of �́ on grain size also agrees with
experimental results. For F ¿ Fc � 0.1 �MPa� 3 d2,
Eq. (4) yields � proportional to d. Thus, from Eqs. (15)
and (16), C0 is proportional to d23. On the other hand,
adjusting Eq. (16) to the data of Ref. [21] for T � 789 K

FIG. 1. Plot of the experimental results of Ref. [21] for the
alloy Al-7475 at four temperatures. The continuous lines
represent Eq. (16) with C0 � 1.1 3 109 s21, V� � 1.23 3
10221 cm3, and e0 � 1.9 eV.
and different grain sizes, one obtains the same dependence
of C0 on d.

In conclusion, superplastic flow depends on the effi-
ciency of grain boundaries for capturing and releasing va-
cancies. However, it depends mostly on the sensitivity of
this ability on the local normal stress, which is governed by
V� � jdeB�dsj. Computer simulations show that vacan-
cies have a significant effect on quasistatic grain boundary
sliding, even without a morphological instability [22].
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