
VOLUME 85, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 11 SEPTEMBER 2000

2320
Untwisting of a Cholesteric Elastomer by a Mechanical Field
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A mechanical strain field applied to a monodomain cholesteric elastomer will unwind the helical
director distribution. There are similarities with the classical problem of an electric field applied to a
cholesteric liquid crystal but also differences. Frank elasticity is of minor importance unless the gel is
very weak. The interplay is between the director being helically anchored to the rubber elastic matrix and
the external mechanical field. Stretching perpendicular to the helix axis induces the uniform unwound
state via the elimination of sharp, pinned twist walls above a critical strain. Unwinding through conical
director states occurs when the elastomer is stretched along the helical axis.

PACS numbers: 61.30.–v, 61.41.+e, 78.20.Ek
Monodomain cholesteric elastomers are formed by
cross-linking mesogenic chiral polymers in the cholesteric
state with a properly formed helical director twist. The
subsequent retention of the helical state as an elastic
equilibrium [1] is a natural consequence of topological
imprinting of textures in the cross-linked network, seen in
a number of other elastomers with liquid crystalline order
and other microstructure. Recently an interesting aspect
of chiral imprinting was established by cross-linking
nematic polymers in a chiral state purely induced by a
chiral solvent [2]; on removal of the solvent, the network
of chemically achiral nematic chains remains macroscopi-
cally cholesteric. Such an imprinting was envisaged a
long time ago [3] on phenomenological grounds. It is now
important to consider the mechanical possibilities of
such solids with a helical microstructure, expecting new
transitions and instabilities characteristic of liquid crys-
talline elastomers. Additionally there are obvious device
applications of such materials, which combine all the
optical properties of twisted nematic liquids with the
remarkable mechanical characteristics of rubbers. There
is some experimental evidence [4] that such effects are
indeed observable and our hope is that this theoretical
work will stimulate more studies in this field.

Consider a monodomain cholesteric elastomer with an
ideal helically twisted director n0�z� in the xy plane, ini-
tially making angle f0 � q0z with the x axis (Fig. 1). We
shall examine two specific cases of imposed uniaxial ex-
tension: (i) the transverse deformation lxx � l, in the
plane including n0, and (ii) the longitudinal deformation
along the helix axis lzz � l.

The symmetry obvious from Fig. 1 requires that in the
case (i) the director remains in the xy plane, characterized
by the azimuthal angle f�z�, while in the case (ii) one
may expect a conical texture with n�z� inclined towards the
stretching axis z and, therefore, described by two angles
u and f (cf. Fig. 3 below). In ordinary liquid cholesterics
subjected to, e.g., a magnetic field Hz , such conical states
are not generally seen, preempted by the 90± switching
of the helix axis and then untwisting in the “transverse”
0031-9007�00�85(11)�2320(4)$15.00
geometry [5]. We shall see that in elastomers, due to
the chiral imprinting, this regime is not possible and the
conical director configurations should occur.

An elastic material with a microstructure represented by
an independently mobile director orientation is analogous
to a Cosserat medium. In the limit of linear elasticity
the relative rotation coupling between the director rota-
tion v � �n 3 dn� and the antisymmetric part of strain,
Vi � eijk´jk ,

1
2

D1�n 3 �V 2 v��2 1 D2n ? ´�s� ? �n 3 �V 2 v�� ,
(1)

was first written down phenomenologically by de Gennes
[6], ´�s� being the symmetric part of the small strain de-
fined as ´ � l 2 d. This symmetry-based expression is
valid only for small deformations, having only linear and
quadratic terms in the local relative rotation.

The microscopic statistical-mechanical theory of ne-
matic rubber elasticity, e.g., [7], obtains a generalization
of the classical rubber-elastic energy density in the form
of a frame-independent expression

F �
1
2

mTr��
0

? lT ? �21 ? l� , (2)

plus the constraint of material incompressibility, expressed
by the condition Det�l� � 1 on the strain tensor. Apart

FIG. 1. The initial director n0�z� in a cholesteric helix makes
an azimuthal angle f0 � q0z with the x axis; the helical pitch is
p � p�q0. Two principal directions of mechanical deformation,
lxx and lzz , are shown by arrows.
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from the strain tensor, the other entries in Eq. (2) are �
0

�
��d 1 ��k 2 ���n0n0 and �21 � �1����d 1 �1��k 2

1����nn, the reduced shape and inverse shape tensors
characterizing the Gaussian distribution of nematic poly-
mer chains before and after the distortion l. The shear
modulus m � nskBT (with ns the number density of
network strands, proportional to the cross-link density)
characterizes the underlying isotropic rubber and sets
the energy scale of distortions. The free energy density
Eq. (2) is valid up to large strains and correctly predicts
the optomechanical responses and the soft elasticity of
nematic elastomers. The free energy F is a function of
only the chain anisotropy r � �k���, the ratio of the
effective step lengths parallel and perpendicular to the
director. It can be independently measured from neutron
scattering or from spontaneous mechanical distortions
ongoing from the nematic to isotropic phase. Unless there
is a large nematic order change induced by l, the shape
� is essentially just a rotated version of �

0
, a uniaxial

ellipsoid with the long axis (at r . 1) oriented along n
instead of n0.

Embedded in the general expression Eq. (2) is the
penalty for local director deviations from the orientation
n0 imprinted into the network at formation. When no
elastic strains are allowed, this elastic energy reduces to

F �
3
2

m 1
1
2

m
�r 2 1�2

r
sin2u , (3)

where u is the local angle between n and n0. The elastic
penalty for such a deviation, appropriately proportional to
the square of chain anisotropy, is the coefficient D1 of the
de Gennes phenomenological expression at small deforma-
tions, Eq. (1). This has to be compared with the Frank elas-
tic penalty for director curvature deformations, 1

2K�=n�2.
The length scale j � 1

r21

p
K�m at which the two en-

ergy contributions are comparable is usually small: j �
1028 m for a typical K � 10211 J�m, m � 105 J�m3 and
not too small anisotropy, r . This is rather less than the
cholesteric pitch p, which is a characteristic scale in our
problem. Therefore, the anchoring of the director n to the
rubbery matrix, described by Eq. (2), tends to dominate
over Frank effects.

We shall assume that a cholesteric elastomer is locally
like a nematic in its elastic response: rubber elasticity is
determined on the scale of network cross-link separations
(a few nanometers), whereas cholesteric pitches are 103

times longer. We can at once see why the chiral structure is
stable but how mechanical fields can destabilize it. With no
elastic strain, the free energy penalty is � 1

2D1�f 2 f0�2

for rotating the director away from its original helical tex-
ture f0 � q0z. On the other hand, if strains are applied,
the rubber can lower its elastic energy Eq. (2) by rotating
the director n towards the axis of principal extension. This
general principle of adjusting the microstructure to mini-
mize the elastic energy is seen in its ultimate form in the
effect of soft elasticity [7,8], when a stretched nematic rub-
ber may reduce its effective modulus (the slope of a stress-
strain curve) to zero by optimising the director rotation and
associated shear strains.

Distortions in a cholesteric elastomer cannot be soft be-
cause of elastic compatibility constraints in matching dif-
ferent director and shear modes along the helix. If the
director at a position z rotates towards the x axis, it is
known that the elongation lxx , contraction lyy , and shear
lxy are precisely determined by the initial orientation, f0,
and the rotation from it, if the process is to be soft. The
next slab of material, at z 1 dz, has the initial orientation
f0 1 q0dz and a different set of soft strains l must arise.
Material points at y translate to lyy�z� ? y and lyy�z 1

dz� ? y in the two neighboring slabs along the helix; that
is, they differ by a relative displacement �≠lyy�≠z�dz ? y.
There is thus a generated shear lyz � �≠lyy�≠z� ? y that
diverges as the linear y dimension of the sample. We ac-
cordingly assert that the transverse contractions are uni-
form. Such deformations, e.g., lxx and lyy for stretching
along the helix axis z, case (ii), have to be equal by sym-
metry and, therefore, lxx � lyy � 1�

p
l. In contrast, for

stretching perpendicular to the helix, case (i), the trans-
verse contractions lzz and lyy should not be symmetric
since one of them is along and the other perpendicular to
the coarse-grained principal axis of a helix z. Incompress-
ibility maintains the relation lzzlyy � 1�l.

(i) Transverse elongation lxx � l.—We consider the
strain tensor in the following form:

l �

0
B@ l 0 0

0 lyy 0
0 0 lzz

1
CA . (4)

Although one expects the director rotation in the azimuthal
plane xy (cf. Fig. 1), there are no associated shear strains.
Such shears, lxy�z� and lyx�z�, would both lead to elas-
tic compatibility problems and we assume they are sup-
pressed. The shears lxz�z� and lxz�z� are not subject to
compatibility requirements. However, they should not ap-
pear on symmetry grounds, which is easily confirmed by
direct minimization. Now n0 � �cosf0, sinf0, 0� and the
rotated director after deformation is n � �cosf, sinf, 0�.
Note that the helix is f0 � q0z in the initial undistorted
material. After deformation, because of the uniform affine
contraction lzz , the material frame shrinks and the effec-
tive helical pitch becomes q̃ � q0�lzz in all expressions
below. With the �

0
and � implied by these n0 and n, the

free energy density Eq. (2) yields

F� �
1
2

m�l2 1 l2
yy 1 l2

zz 1
r 2 1

r

3 �l2�rc2
0s2 2 c2s2

0� 1 l2
yy�rc2s2

0 2 s2c2
0�

2 2llyy�r 2 1�s0c0sc�� , (5)

where c0 and s0 are shorthand for cosf0 and sinf0, respec-
tively; analogously, c and s stand for cosf and sinf. The
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appearance of terms linear and quadratic in f (or rather
sinf because all values of the azimuthal angle will be
found along the cholesteric helix) indicate that rotations
can always lower the energy for l fi 1. Minimization of
F� with respect to f results in the expression for the local
director angle f�z� at a given imposed extension l, de-
pending on the phase of cholesteric helix:

tan2f �
2llyy�r 2 1� sin2q̃z

�r 2 1� �l2 1 l2
yy� cos2q̃z 1 �r 1 1� �l2 2 l2

yy�
.

(6)

Substituting this oscillating expression back into F� and
coarse graining it over the helix, we obtain the optimal
magnitude for the transverse contractions along the pitch,
lzz , and in the azimuthal plane, lyy , the latter plotted in
Fig. 2(a). This variation is contrasted with two classical
regimes—an isotropic 3D contraction �1�

p
l and a 2D

version �1�l, corresponding to lzz � 1. From the plot it
is apparent that a good interpolation of the region below the
threshold is achieved by a power law lyy 	 l23�4 (and, as
a consequence, lz 	 l21�4). At a critical value lc 	 r2�7

a discontinuous jump in the director angle occurs; see
Fig. 2(b) and also the kink in lyy , Fig. 2(a).

Initially, all directors at 0 , q̃z , p�2 are induced to
rotate “backward” towards f � 0, and all directors at
2p�2 , q̃z , 0 rotate “forward” towards f � p , as the
imposed deformation l increases; see Fig. 2(b). Although
f � 0 and p describe equivalent directors, the twist wall
between these two states becomes more and more sharp.
Because of the helix imprinting, the orientations f � 0
at q̃z � 0 and f � p at q̃z � p are pinned, as is the
middle point of the twist wall at q̃z � p�2. As a result,
no change of the helical pitch can occur. This is in con-
trast with cholesteric liquid crystals, where in a classical
problem of helix unwinding by an electric or a magnetic

FIG. 2. (a) The transverse contraction, lyy , as a function of
imposed lxx � l. Solid line shows the exact numerical solu-
tion of the coarse-graining problem for r � 1.9; one can see
the kink where the discontinuous transition at lc � r2�7 
 1.2
takes place. The dashed line is an interpolation by lyy � l23�4;
two thin lines show classical regimes of lyy � 1�

p
l and 1�l.

(b) The director angle f against the cholesteric helix phase q0z
for increasing strain l = 1 (open circle), 1.15 (triangle), 1.23
(open square), 1.25 (shaded square), and 1.5 (shaded circle).
At l $ lc the director pinning at f � p�2 breaks down and a
discontinuous transition occurs, after which the director continu-
ously rotates towards the final uniform f � 0.
2322
field one finds an increase in cholesteric pitch [5,9] along
with the coarsening of the helix.

Examining Eq. (6) one finds that as the increasing ap-
plied strain reaches a critical value lc, the width of the
twist wall, centered at q̃z � p�2 between the values f �
p�4 and 3p�4, decreases to zero and the discontinuous
transition occurs. The director in the midpoint of the wall
breaks away from the pinning and jumps from f � p�2
to f � 0, along the strain axis, thus removing the topo-
logically constrained twist wall. From this point there is
no barrier for director rotation towards the final uniform
orientation with f � 0, as the last two curves in Fig. 2(b)
indicate.

A discontinuous director jump at a critical strain has
been predicted and indeed observed in nematic elastomers
stretched at exactly 90± to their initial director n0 [7,10].
In a stretched cholesteric, one always finds an exact phase
angle f � p�2 along the helix, where the center of the
narrowing twist wall becomes pinned from both sides. It
is this point that experiences a discontinuous jump.

(ii) Stretching along the pitch axis lzz � l.—We now
take (cf. Fig. 1)

l �

0
B@ 1�

p
l 0 lxz

0 1�
p

l lyz

0 0 l

1
CA . (7)

No compatibility problem with shears lxz�z� and lyz�z�
arises from their variation with z along the helical pitch.
By contrast, their conjugate strains lzx and lzy , which
would also have to vary with z, would lead to a serious
compatibility mismatch, e.g., ≠lzx�≠z � ≠lzz�≠x. We
therefore assume lzx and lzy are suppressed even though
in other settings [7] these are the generators of soft elastic
response.

In this geometry one expects the director rotation out
of the azimuthal xy plane; see Fig. 3(a). The initial di-
rector is, as before, n0 � �cosq0z, sinq0z, 0�, while after
deformation the rotated director is n � �cosu cosq̃z,
cosu sinq̃z, sinu�. As in the case (i), all physical dimen-
sions in the deformed sample are scaled by the affine strain.
In particular, here z ! lz, resulting in the corresponding

FIG. 3. (a) The geometry of director rotation in response to
stretching lzz along the helix axis. (b) The angle u of director
tilt plotted against the imposed strain l, Eq. (11) for r � 1.3
(triangle) and r � 1.9 (circle). Strain varies from 1 to l2 �
r2�3 at which point the alignment is u � p�2, uniformly along
the former pitch axis.
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expansion of the cholesteric pitch: q̃ � q0�l. With the
�

0
and � defined by the axes n0 and n, the free energy

density Eq. (2) now becomes a function of three variables:
the director tilt angle u and the two shear strains lxz�z�
and lyz�z� (we continue to neglect the effects of director
gradients and Frank elasticity). Algebraic minimization
over these components of strain tensor is not difficult and
results in√

lxz

lyz

!
� l

�r 2 1� sin2u

r 1 1 2 �r 2 1� cos2u

√
cosq̃z
sinq̃z

!
, (8)

in phase with the azimuthal angle along the helical pitch.
Equation (8) describes small distortions in the xy plane,
perpendicular to the helix axis, rotating following the ini-
tial orientation n0. On substitution of these optimal shears
back into the free energy density one obtains

Fk �
1
2

m

∑
l2

1 1 �r 2 1� sin2u
1

2 1 �r 2 1� sin2u

l

∏
.

(9)

Fk expands at small tilt angle u as

Fk 

1
2

m�l2 1 2�l� 2
1
2

mu2�r 2 1� �l2 2 1�l� ,
(10)

that is, the director starts to rotate down to define a cone
of semiangle p�2 2 u immediately as the strain l . 1
is imposed. The equilibrium director tilt is obtained by
minimization of the full free energy density Fk�u�:

sin2u �
l3�2 2 1

r 2 1
; u � arcsin

s
l3�2 2 1

r 2 1
. (11)

The director rotation starts and ends in a characteristically
singular fashion Fig. 3(b) (reminiscent of the universal op-
tomechanical response seen in nematic elastomers [11]).
The rotation is complete with the director aligned along
the extension axis (u � p�2) at l � r2�3 which, for some
elastomers, can be a very large extension.

In contrast to conventional cholesteric liquid crystals, we
have altogether ignored effects of Frank elastic energy. The
most compelling evidence for this is the very stability of
the imprinted helical state in the face of the Frank penalty
1
2K2q2

0. The argument for this relies upon the great differ-
ence in characteristic length scales, the elastomer penetra-
tion depth, more accurately expressed as j [cf. Eq. (3)],
and the director modulation wavelength estimated by the
helical pitch p � p�q0 ¿ j. There are two possibili-
ties to alter this inequality—by increasing the penetration
depth j (by either making a weaker gel or a less anisotropic
one) or by locally increasing the director gradient (e.g., in
the ever narrowing twist wall, Fig. 2). As the width of
the twist wall decreases to zero, the Frank energy density
grows and diverges at the critical strain lc. Therefore, the
local analysis of Eqs. (5) and (6) is valid only outside the
region of strain Dl � �q0j�2 around lc. In a typical hard
nematic rubber this is a very small deviation, not altering
the conclusions drawn for the case (i), but in a weak gel
with low chain anisotropy it may become more substantial.
Also, the actual finite width of the twist wall at the transi-
tion may raise the question of topological mechanism for
eliminating the twist stored in the cholesteric helix, per-
haps by a disclination loop expansion in the xy plane.

One can estimate how weak a gel must be for the Frank
elasticity to intervene in our analysis in a more substan-
tial way. When j � p, for example, with a pitch p �
4 3 1027 m, then a rubber modulus of only m � 60 J�m3

is required (assuming �r 2 1� � 1). Nematic elastomers
typically have m � 103 2 105 J�m3 and their cholesteric
analogs would clearly find Frank elastic effects minor.
However, an elastomer with a reasonable m � 103 J�m3

would feel the director gradients when its polymer chain
anisotropy becomes as low as r � �k��� � 1.25. Such
a value is easily reached in side-chain liquid crystal poly-
mers, especially near the clearing point [7].

To summarize, we have predicted a qualitatively new
response of an elastomer with chiral cholesteric micro-
structure to applied fields that is different from classical
cholesteric liquids. Likewise, the chiral imprinting and its
modification by elastic fields is a new effect in rubbers and
solids. One could envisage tuning these effects by the use
of solvents (with or without chiral power) and by other
fields affecting the director, for instance electric.
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