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Optimizing the Classical Heat Engine
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A pair of systems at different temperatures is a classic environment for a heat engine, which produces
work during the relaxation to a common equilibrium. It is generally believed that a direct interaction
between the two systems will always decrease the amount of the obtainable work, due to inevitable
dissipation. Here a situation is reported where, in some time window, work can be gained due to the
direct coupling, while dissipation is relevant only for much larger times. Thus, the amount of extracted
work increases, at the cost of a change of the final state.
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The classical problem of thermodynamics is the de-
termination of the maximal amount of work that can be
extracted from a nonequilibrium system, during the relaxa-
tion to the equilibrium state [1–4]. In recent years the
interest in this time-honored problem was renewed (see
[4] for review). In many cases the limits proposed by the
founders of the classic thermodynamics have appeared as
too idealistic, and attention was focused on the study of
dissipative effects, which restrict the abilities of realistic
heat engines [4]. One of the most popular examples of
that kind is a direct interaction between the thermal baths
that drive the standard heat engine [5]. Evidently, this is a
way to dissipate energy. The common opinion, expressed
in textbooks [1–3], is that dissipation is the main, if not
the only, effect of any direct interaction.

The purpose of the present paper is to show that a direct
interaction between the baths may have energy transfer,
rather than energy dissipation, as its main physical effect.
The reason is that the relevant time scale of the transfer
arising from the direct coupling can be widely separated
from the dissipative time scale. This leads to an optimiza-
tion of the classical heat engine, in a certain time window.
As a result, the final equilibrium state of the heat baths
is changed. The mechanism arises from the recently pro-
posed steady adiabatic state [6] (see also [7,8] in the related
context).

First, we shall reproduce the classical discussion of
the maximal amount of work that can be extracted from
a nonequilibrium system. The underlying ideas are, of
course, well known, and we shall need them for a care-
ful interpretation of our main result.

The classical analysis.—Consider two subsystems
which have different temperatures T1 and T2. Depending
on the concrete relaxation process, the whole thermally
isolated system will produce different amounts of work.
This model is well known and described in textbooks on
thermodynamics [1–3]. We shall assume that the total
volume of the system is unchanged by the relaxation
(although it can vary during the process), since we wish
to take into account only the work that can be done due to
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the nonequilibrium initial state, and not due to the general
expansion. Denoting by Ui , Si the initial energy and
entropy of the system, we get the following expression for
the work W performed by the system:

W � Ui 2 U�S� , (1)

where U�S� is energy of the final equilibrium state as a
function of its entropy. Because the temperature is posi-
tive, U is a monotone function of S (≠U�≠SjV � T . 0 in
equilibrium). Therefore, W is maximal when S is as small
as possible. Since the whole system is thermally isolated,
the second law demands S $ Si . The maximal amount of
work is attained for S � Si , i.e., for a reversible process
towards equilibrium. It is believed that for obtaining the
maximal amount of work any direct interaction between
subsystems should be removed, because it would induce ir-
reversible relaxation. Thus, a third body (“engine”) should
operate between our subsystems to perform the work. At
the end of the relaxation process the working body must
return to its initial state. The expression of the total amount
W of the extracted work can be given as

W � U1�T1� 1 U2�T2� 2 U1�T0� 2 U2�T0� , (2)

where the final temperature T0 is determined by the re-
versibility condition

S1�T1� 1 S2�T2� � S1�T0� 1 S2�T0� , (3)

and Uk , Sk (k � 1, 2) are energy and entropy of the cor-
responding subsystems. The reversible relaxation process
consists of an infinite amount of elementary cycles of the
third body. The famous Carnot process is the most rep-
resentative example for such a cycle. The local efficiency
h of the optimal cycle, defined as the maximal extracted
work during the cycle divided by the input energy, depends
only on the conditions of reversibility and conservation of
energy: h � 1 2 �T1�T2�, if T1 , T2 [1–3]. This effi-
ciency is universal and system independent, emphasizing
the power of thermodynamics. In contrast, the maximal
amount of the extracted work (2) is not universal, and can
vary from one system to another.
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The steady adiabatic state.—Steady adiabatic systems
have two distinctive properties [6]: (1) different subsys-
tems are not in the mutual equilibrium, but possess dif-
ferent temperatures; (2) the local characteristic relaxation
times of these subsystems are very well separated. Let
us consider a statistical system which has two subsystems
with coordinates x1 and x2. (x1 and x2 can thus also code
a set of variables; we will not denote that explicitly.)

The corresponding relaxation times are denoted by G1
and G2. The condition of well-separated time scales is
ensured by g � G1�G2 ø 1. The stationary distribution
of this system can be found from the following heuristic
arguments (for a more rigorous presentation, see [6]). Be-
cause of the large difference between relaxation times the
x1 subsystem comes to an equilibrium while the x2 variable
is almost unchanged. The corresponding Gibbs stationary
distribution reads

P�x1 j x2� �
1

Z�x2�
exp�2b1H�x1, x2�� , (4)

where

H�x1, x2� � H1�x1� 1 H2�x2� 1 gHint�x1, x2� (5)

is the total system’s Hamiltonian, T1 � 1�b1 is the tem-
perature of the x1 subsystem, and Z�x2� is the partition sum
at fixed x2. For obtaining the coarse-grained distribution
P�x2� notice that, after integrating out of the vast variable
x1, the effective Hamiltonian for the slow variable x2 is
just 2T1 lnZ�x2�, the free energy of the x1 subsystem at
fixed x2. The stationary distribution of x2 then reads

P�x2� �
ZT1�T2 �x2�

Z
, Z �

Z
dx2ZT1�T2 �x2� . (6)

The complete stationary distribution can now be written as
P�x1, x2� � P�x2�P�x1jx2�. The mean energy and entropy
of the system are given by the following general definitions:

U �
Z

dx1 dx2 H�x1, x2�P�x1, x2� , (7)

S � 2
Z

dx1 dx2 P�x1, x2� lnP�x1, x2� , (8)

S can be decomposed as the sum of the entropies of the
slow and fast subsystems, S � S1 1 S2, with

S1 �
Z

dx2 P�x2�

√
2

Z
dx1 P�x1 j x2� lnP�x1 j x2�

!
,

S2 � 2
Z

dx2 P�x2� lnP�x2� .
(9)

S1 is the entropy of the fast variable x1 at x2, averaged x2,
while S2 is the entropy of this slow variable itself. As was
shown in [6] the considered system admits a thermody-
namical description. In particular, defining the free energy
as F � 2T2 lnZ , we get

F � U 2 T1S1 2 T2S2 , (10)
where the entropies can also be obtained by the standard
relations

S1 � 2
≠F
≠T1

Ç
T2

, S2 � 2
≠F
≠T2

Ç
T1

. (11)

The energy and entropies are constant in the steady state,
but a direct coupling induces a steady entropy production at
rate �S and an energy dissipation at rate �P. These quantities
were analyzed in Ref. [6], and the obtained formulas read
�P � T2

�S 1 O �g2�, with

�S � gg2 �T1 2 T2�2

G1T2
1 T2

Z
dx2 dx1 P�x1, x2�

3

"
≠Hint�x1, x2�

≠x2
2

Z
dy P� y j x2�

≠Hint� y, x2�
≠x2

#2

1 O �g2� . (12)

Although these results were obtained for the strictly steady
state, they can be applied also in the time-dependent case,
if the characteristic time of this quasistationary pro-
cess is much larger than the largest relaxation time G2.
For instance, to obtain the time-dependent distribution
function for the case of slowly (adiabatically) changing
temperatures or other parameters, one just inserts these
time-dependent values directly in Eqs. (4) and (6). In this
context, the change of free energy (10) can be shown to
be the adiabatic work Wad done on the system, when
varying a parameter a (for example, the width of the
potential, or a coupling constant) from the initial value ai

to final value af at constant temperatures:

Wad �
Z af

ai

da
Z

dx1 dx2 P�x1, x2, a�
≠H�x1, x2, a�

≠a

� F�T1, T2; af� 2 F�T1, T2; ai� . (13)

This is fully analogous to the property of the usual (single-
temperature) free energy.

The dissipative effects [given by Eq. (12)] are small for
small g, g. Let us neglect them for the moment; later we
shall show that this is allowed in a certain time window.

The maximal amount of work extracted from the steady
adiabatic state.—Certainly, we can apply the above-
mentioned general analysis, concerning the maximal
work, to our adiabatic system. In fact, this analysis does
not use any concrete property of the initial nonequilibrium
state, but we should take into account that our subsystems
interact directly, and not only through the third body. As
compared to the case without direct coupling, the system
will now relax to a different equilibrium state, and this is
the reason why one can get more work done by it. The
total amount of the gained work can be again written as

W�g� � U�T1, T2� 2 U�Tg, Tg� , (14)

and the temperature Tg of the final equilibrium state is
defined from the condition of reversibility,
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S�T1, T2� � S�Tg, Tg� . (15)
This condition involves the total entropy of the interacting
subsystems, and now assumes that there are no additional
sources of dissipation besides (12).

We shall investigate Eqs. (14) and (15) to first order in
the small parameter g. Hereafter quantities of the order g0

and g1 will be indicated by the index 0 and 1, respectively.
It is evident from (5) that to order g1 it holds that

F � F�0� 1 gV0 , (16)

where

V0�T1, T2� �
Z

dx1 dx2 P�x1, x2�Hint�x1, x2� . (17)

Using Eqs. (7)–(11), one gets

S1 � S
�0�
1 1 gS

�1�
1 � S

�0�
1 2 g≠T1V0 , (18)

S2 � S
�0�
2 1 gS

�1�
2 � S

�0�
2 2 g≠T2V0 , (19)

S � S�0� 1 gS�1� � S�0� 2 g�≠T1 1 ≠T2�V0 , (20)

U � U�0� 1 gU�1� � U�0� 1 g�1 2 T1≠T1 2 T2≠T2�V0 .
(21)

Let us now obtain from Eq. (15) an expression for the final
temperature Tg to order g, given the value of T0, the final
temperature for g � 0,

Tg � T0

∑
1 1 g

S�1��T1, T2� 2 S�1��T0, T0�
C1 1 C2

∏
. (22)

Here Ck � Tk≠S
�0�
k �≠TkjV � ≠U

�0�
k �≠TkjV , with

k � 1, 2, are the heat capacities of the subsystems
when they are uncoupled. Starting from Eq. (14) and
using Eqs. (18)–(21), we finally derive the excess work
at order g,

W �1� � lim
g!0

W�g� 2 W�0�
g

� V0�T1, T2� 2 V0�T0, T0�

1

2X
k�1

�T0 2 Tk�≠Tk V0�T1, T2� . (23)

This is the first main result of our work. It remains to
be shown in a specific example that this quantity can be
positive. Let us first point out that further simplifications
occur when T1 is close to T2. To first order in the parameter
T1 2 T2 Eq. (3) gives us

T0 �
C1 1 C2

C1T1 1 C2T2
T1T2 , (24)

while Eq. (23) can be approximated by

W �1� �
2X

k�1

�T0 2 Tk� �≠Tk V0 2 �≠Tk V0�jT1�T2�T0 � .

(25)
To illustrate the general results let us present a con-

crete model, where the direct interaction increases the total
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amount of work: W�g� . W�0�. One of the most popu-
lar models of the thermal bath is a set of harmonic os-
cillators [9], which is frequently used to derive kinetic
equations or to gain fundamental insight. Following this
well-established tradition, we shall model our first (sec-
ond) thermal bath by N1�N2) oscillators at temperature T1
(T2), and weakly anharmonic interaction:

H �
1
2

N1X
i�1

x2
1,i 1

1
2

N2X
i�1

x2
2,i 1 g

NX
i�1

x2
1,ix

2
2,i , (26)

where g . 0, and N1, N2 $ N . It is straightforward to
show that to order g one has the partial partition sum

Z�x2� � T
N1�2
1 exp

√
2

1
2

b1

N2X
i�1

x2
2,i 2 g

NX
i�1

x2
2,i

!
(27)

and the full partition sum

Z � T
�1�2�N1T1�T2

1 T
�1�2�N2

2 �1 1 2gT1�2�1�2�N . (28)

The latter result yields the free energy F � 2T2 lnZ ,

F � 2
1
2

N1T1 lnT1 2
1
2

N2T2 lnT2 1 gNT1T2 , (29)

in agreement with the fact that V0 � NT1T2. According
to previous rules we derive

S1 �
1
2

N1�lnT1 1 1� 2 gNT2 , (30)

S2 �
1
2

N2�lnT2 1 1� 2 gNT1 . (31)

The internal energy follows as U � F 1 T1S1 1 T2S2,

U �
1
2

N1T1 1
1
2

N2T2 2 gNT1T2 . (32)

Notice that the sign of the order g correction is negative,
due to entropic effects. To determine T0 from Eq. (3) we
need entropies S

�0�
1 , S

�0�
2 , that can be read of from Eqs. (30)

and (31) at g � 0. One obtains T0 � T
n1
1 T

n2
2 and then

from Eq. (22)

Tg � T
n1
1 T

n2
2 �1 1 2gn�2T

n1
1 T

n2
2 2 T1 2 T2�� , (33)

where n � N��N1 1 N2�, nk � Nk��N1 1 N2�, k �
1, 2. According to Eq. (1) and using U

�0�
k � NkTk�2, one

gets for g � 0 the maximal amount of work,

W�0� �
1
2

N1�T1 2 T
n1
1 T

n2
2 � 1

1
2

N2�T2 2 T
n1
1 T

n2
2 � .

(34)

Taking into account that V0�T1, T2� � NT1T2, one gets
from Eq. (23) a non-negative shift in the maximal of
amount of work,

gW �1� � gN�Tn1
1 T

n2
2 2 T1� �T2 2 T

n1
1 T

n2
2 � $ 0 . (35)

The equality is realized in the trivial case T1 � T2. Only
for g , 0 this mechanism would reduce the work.
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Equation (23), and especially our model-dependent re-
sult (35), show that the full amount of the extracted work
can increase due the direct coupling. Let us now return to
the dissipative effects. For the considered model the en-
ergy dissipated per unit of time �P � T2

�S can be derived
from Eq. (12). It reads [6]

�P �
8g2N

G1
gT2�T1 2 T2�2 1 O �g2� . (36)

Our aim is now to obtain the characteristic time T , after
which the energy dissipated due to the direct coupling is
comparable with the energy gW �1� gained according to
Eq. (35). For the dissipated energy an upper estimate can
be given as �PT , and we get, from �PT � gW �1�,

T �
G2

8g
�Tn1

1 T
n2
2 2 T1� �T2 2 T

n1
1 T

n2
2 �

�T1 2 T2�2 . (37)

To be able to neglect the dissipated energy, the duration
of our process t must be much smaller than T . On the
other hand, since we are getting the work in the relaxation
process, its duration t must be much higher than the largest
relaxation time G2. Thus, for times

G2 ø t ø T (38)

it is possible to perform more work due to the presence
of the direct coupling. The necessary condition G2 ø T
is realized mainly when g is small. If one were not able
to complete the relaxation in the time window (38), then
for t � T the gained work would be equal to that without
any direct coupling. The same analysis can be applied for
the general case.

So far we have compared the efficiencies of two systems
with the same initial temperatures T1, T2, and different
values of g. One can also compare cases of identical
initial energies, �T1, T2, g � 0� and �T̄1, T̄2, g . 0�, where
the temperatures T̄1, T̄2 are defined by U�T1, T2, g � 0� �
U�T̄1, T̄2, g . 0�. The analysis is very similar to that given
above, and indicates that our main result remains valid also
in this case. There are examples of �T̄1, T̄2�, for which the
direct coupling enhances the work.

In the context of our main result it is useful to investigate
which amount of work W �0 ! g� should be spent by
external sources to switch on the small coupling g, starting
from the state with g � 0. We shall consider the two
extremes, very slow and very fast switching, which happen
to give the same answer for small g. In the first case one
uses Eqs. (13) and (16) to obtain (T1, T2 are constant)

Wad�0 ! g� � gV0 . (39)
For the very fast switching the initial state does not
change, and the main change comes from the Hamilto-
nian (5): Wfast�0 ! g� � 	H�g� 2 H�0�
0, which for
small g leads to the same result as in Eq. (39). Using
Eqs. (23), (35), and (39) one readily notices that there are
temperatures, for which Wad�0 ! g� , gW �1�, implying
that the cost for the switching is less than the gain due to
coupling: W�0� 1 Wad�0 ! g� , W�g�.

Until now it was believed that the presence of a direct
interaction between the baths of a heat engine reduces its
efficiency [1–5,10]. The purpose of the present paper is
to demonstrate that it can enhance the efficiency. Having
changed the initial and final states, a direct coupling intro-
duces, of course, both a change in work and dissipation.
We show that the characteristic times of these two quanti-
ties can be well separated. For times in the window (38)
the work can be enhanced, though the dissipation is not
yet relevant. This additional amount of work, which can
be obtained from Eqs. (23), (25), and (35), is provided by
the modified final state of the baths.

Finally, we will briefly discuss related studies. Refer-
ences [10,11] consider the local thermodynamic efficiency
of brownian motors and related models. The statement of
this problem differs from the one considered by us, but it
is interesting to mention that the role of a direct interaction
between baths was studied also in this context [11].

[1] H. B. Callen, Thermodynamics (John Wiley, New York,
1966); Thermodynamics (John Wiley, New York, 1985).

[2] L. D. Landau and E. M. Lifshitz, Statistical Physics (Perg-
amon Press, New York, 1980), Part 1.

[3] S.-K. Ma, Statistical Mechanics (World Scientific, Singa-
pore, 1985).

[4] B. Andresen, P. Salamon, and R. S. Berry, Phys. Today
37, No. 9, 62 (1984); B. Andresen, R. S. Berry, M. J.
Ondrechen, and P. Salamon, Acc. Chem. Res. 17, 266
(1984).

[5] P. Salamon, A. Nitzan, B. Andresen, and R. Berry, Phys.
Rev. A 21, 2115 (1980).

[6] A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev.
E (to be published).

[7] Th. M. Nieuwenhuizen, Phys. Rev. Lett. 80, 5580 (1998).
[8] Th. M. Nieuwenhuizen, Phys. Rev. E 61, 267 (2000).
[9] C. Gardiner, Handbook of Stochastic Methods (Springer-

Verlag, Berlin, 1982); G. W. Ford, M. Kac, and P. Mazur,
J. Math. Phys. 6, 504 (1965).

[10] J. M. R. Parrondo and P. Espanol, Am. J. Phys. 64, 1125
(1996); K. Sekimoto, J. Phys. Soc. Jp. 66, 1234 (1997); I.
Derenyi and R. D. Astumian, Phys. Rev. E 59, 6219 (1999).

[11] I. M. Sokolov, Europhys. Lett. 44, 278 (1998); Phys. Rev.
E 60, 4946 (1999); cond-mat /0002251.
235


