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Determination of the Bond Length and Binding Energy of the Helium Dimer by Diffraction
from a Transmission Grating
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A molecular beam consisting of small helium clusters is diffracted from a 100 nm period transmission
grating. The relative dimer intensities have been measured out to the 7th order and are used to determine
the reduction of the effective slit width resulting from the finite size of the dimer. From a theoretical
analysis of the data which also takes into account the van der Waals interaction with the grating bars,
the bond length (mean internuclear distance) and the binding energy are found to be �r� � 52 6 4 Å
and jEb j � 1.1 1 0.3� 2 0.2 mK.

PACS numbers: 33.15.–e, 03.75.Be, 21.45.+v, 36.40.Mr
Virtually all our current knowledge of the structure of
molecules is based on either NMR, microwave, infrared,
visible, or Raman spectroscopy—or on x-ray and electron
scattering. Since these techniques all in one way or another
disturb the system, they are not suitable for very weakly
bound systems with large scattering lengths. Such appar-
ently exotic systems have recently attracted considerable
attention in connection with Bose-Einstein condensation
of ultralow temperature gases [1].

An outstanding example of a fragile Boson molecule
is the helium dimer 4He2. Its existence was for a long
time disputed because of its extremely small binding en-
ergy which is now thought to be about 1 mK (�1027 eV).
Presently, theory predicts the He-He potential to support
only a single s wave bound state [2]. While a first indica-
tion for its existence was reported in Ref. [3], diffraction
experiments [4] very similar to those reported here pro-
vided the first conclusive evidence. From a quantitative
experimental study of the bond length and binding energy
of the dimer it is possible to probe the He-He potential
which is of fundamental importance for understanding the
remarkable superfluid properties of liquid helium.

The extremely weak He-He potential also has fascinat-
ing consequences for the 4He3 molecule which is predicted
to exhibit a long range Efimov type excited state [5]. Also
the nature of the small mixed 3He�4He clusters [6] and the
smallest bound 3He cluster which is presently predicted to
consist of about 30 atoms [7] as well as magic numbers in
the large 3He clusters [8] all are expected to depend sensi-
tively on the exact shape of the two-body potential.

In a pioneering experiment Gentry and collaborators [9]
used nanoscale sieves to measure the reduced transmis-
sion T of dimers, compared to the monomers, through
the small circular holes, with diameter D, of the sieve.
They assumed a classical dumbbell model for the dimer
and determined the bond length �r� from the expression
�r� � D�1 2 T � to be �r� � 62 6 10 Å. Recently, two
of the present authors were able to account for the breakup
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of the dimers at the edges of the holes in a quantum me-
chanical theory [10]. This theory predicts that transmission
experiments provide an upper limit on �r� only.

The present experiments overcome these difficulties
by measuring only the coherently scattered dimers which
make up the intensity in the small angle low order peaks
in the diffraction from a transmission grating. From the
data, �r� is determined by a quantum mechanical theory
which includes the surface potential of the grating bars
and breakup effects. Then from �r� the binding energy is
determined to be jEbj � 1.1 1 0.3� 2 0.2 mK, which is
the most precise determination to date.

The cluster beam diffraction apparatus is the same as
recently described in Ref. [11]. The cryogenic 4He source
pressures P0 and temperatures T0 were varied between
�P0, T0� � �0.3 bar, 4.5 K� and �65 bar, 65 K� to produce
beams with an optimum fraction of dimers and with a neg-
ligible number of clusters larger than 4He3. The beam is
highly collimated by 5 mm high 20 mm (150 mm from the
source) and 10 mm (1000 mm from the source) slits and
then is diffracted from a d � 100 nm period (SiNx) trans-
mission grating [12]. The depth and wedge angle of the
grating bars (see Fig. 1) were determined from transmis-
sion measurements [11] to be t � 70 nm and b � 13±,
respectively.

Figure 2 shows the measured diffraction patterns at 8
different source temperatures T0 between 4.5 and 65 K.
The 4He1 ion signal, which spans more than 4 orders of
magnitude and has a maximum forward intensity of about
3 3 105 counts�sec at T0 � 65 K, is plotted on a loga-
rithmic scale versus the deflection angle q . The signal
was detected with a mass spectrometer set at the 4He1

ion mass because of the much higher probability for frag-
mentation to produce 4He1 (95%) than 4He 1

2 (5%) from
the 4He2 molecule [13]. The equally spaced, most in-
tense diffraction peaks in each diffraction pattern are due to
atoms, while all the other peaks are due to clusters 4HeN .
Since all clusters have the same velocity y as the atoms
© 2000 The American Physical Society
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FIG. 1. Cross section of a grating slit with two bars showing
their geometry and the important coordinates.

[14] their de Broglie wavelengths l and hence their nth
order diffraction angles qn are inversely proportional to
their mass since sinqn � nl�d � nh�Nmyd. The peaks
marked by an asterisk which appear halfway between the
atom peaks are due to dimers. Only the odd order dimer
peaks are visible, since the others coincide with the intense
atom peaks. Similarly, the first order trimer peaks appear
at one-third of the monomer diffraction peaks.

The relative diffraction intensities have been determined
from Fig. 2 by fitting each peak with a Gaussian profile
and evaluating the peak areas, thereby accounting for the
different widths of the peaks due to the small Dy�y # 2%
velocity spread [11].

To determine the helium dimer bond length it is nec-
essary to derive an expression for the diffraction intensi-
ties In of the measured dimer diffraction peaks in Fig. 2.
The incident dimer wave function, which is a product of a
center of mass plane wave eiKZ and the bound state wave
function fb�r�, evolves by the scattering into the scat-
tering wave function c�X, Z, r�, where r � �x, y, z� are
the relative coordinates of the dimer and �X, Z� the center
of mass coordinates normal to the height of the bars (see
Fig. 1). The scattering wave function c is a solution of the
two-particle Schrödinger equation

∑
2

h̄2

2M

µ
≠2

≠X2 1
≠2

≠Z2

∂
1 Vgr �X, Z, r�

2
h̄2

2m
Dr 1 V �r�

∏
c �

µ
h̄2K2

2M
1 Eb

∂
c , (1)

where M is the dimer mass, m its reduced mass, V �r�
the He-He potential, and Vgr �X, Z, r� the interaction
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FIG. 2. Diffraction patterns of 4He cluster beams diffracted
from a 100 nm period transmission diffraction grating with dif-
ferent nozzle temperatures. The odd order dimer diffraction
peaks are marked by an asterisk.

of the dimer constituents with the grating [10]. Only
the center of mass part of c in the elastic channel,
cel�X, Z� �

R
drf

�
b�r�c�X, Z, r�, is needed. For large

R �
p

X2 1 Z2 it becomes

cel�X, Z� °!
R!`

fel�q �
ei�KR2p�4�

p
R

, (2)

where fel�q � is the elastic scattering amplitude. Thus, the
intensity is given by I�q � � j fel�q �j2.

Multiplying Eq. (1) from the left by f
�
b�r� and integrat-

ing over r yields

µ
≠2

≠X2 1
≠2

≠Z2 1 K2

∂
cel�X, Z� � r�X, Z� , (3)

where r�X, Z� � 2M
h̄2

R
drf

�
b�r�Vgr �X, Z, r�c�X, Z, r�.

For Z $ Z0 chosen farther behind the downstream bound-
ary of the grating than the spatial extent of the dimer (see
Fig. 1), r is negligible. Thus, Eq. (3) is homogeneous
there and Huygens’ principle [10] yields

fel�q � �
cosq
p

l
e2iKZ0 cosq

Z
dXe2iKX sinq cel�X, Z0� .

(4)
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FIG. 3. Effective slit widths of He, Ne, and 4He2 plotted as
a function of the beam velocity. Data points indicate fits of
In�I1 determined from Eq. (5) to experimental intensity ratios
obtained with the same grating in the present work (filled sym-
bols) and previously in Ref. [15] (open symbols). The curves
through the atomic effective slit widths of He and Ne are cal-
culated as in Ref. [15]. The solid line through the effective slit
widths of 4He2 is a best fit curve of Eq. (7) for the 4He2 bond
length �r�.

This is formally analogous to the diffraction of point par-
ticles [15] where the scattering amplitude is determined
by a transmission function whose counterpart here is
cel�X, Z0�. Similarly as in Ref. [15], Eq. (4) can be used
to show that the nth order diffraction peak intensity is of
the general form

In ~ e2�2pns�d�2

∑
sin2�npseff�d� 1 sinh2�npd�d�

�np�2

∏
.

(5)

Equation (5) contains a Kirchhoff slit function, where the
effective slit width seff contains the geometrical slit width
2286
s0 and corrections from the surface potential and dimer size
[10,15]. These corrections enter Eq. (5) linearly while d,
which suppresses the zeros of the Kirchhoff term, enters
quadratically. Physically, d reflects the diffuseness of the
bar-to-slit transition due to the surface potential. The ex-
ponential damping term in Eq. (5) can be attributed in part
to the breakup of dimers [10] but depends also on the van
der Waals interaction of the dimer with the grating bars
and on their random imperfections [11,15].

To determine seff Eq. (5) was used to fit the diffraction
data. Figure 3 shows seff for 4He2 and He from the present
data at various velocities (filled symbols), compared with
previous results for He and Ne for the same grating (open
symbols). The parameters s and d are of the order of
2.5 and 3 nm, respectively, for both helium atoms and
dimers, and they exhibit the expected slow increase with
decreasing velocity [15]. Because of lower intensities the
statistical error of seff indicated in Fig. 3 is larger for the
dimers than for the atoms. For 4He2 the values for seff
are significantly smaller, by about 2.5 nm, than those for
either He and Ne. Since Ne has about the polarizability of
4He2, namely twice that of He, the difference must be a size
effect. According to Ref. [10] the difference is predicted
to be about half the bond length.

The present data for He give a geometrical slit width
s0 � 70.8 6 0.3 nm which differs by 0.4 nm from the
previously reported value of s0 � 71.2 6 0.1 nm [15] for
the same grating. This small decrease may be attributed
to a monolayer of residual gas. Similar small decreases in
slit width have been observed in the past.

The helium dimer bond length �r� will now be deter-
mined from the effective dimer slit widths and the single-
slit transmission function, t�z �, for a single incoming
helium atom [15], where z � s0�2 2 X (see Fig. 1). Pro-
ceeding and incorporating the surface potential as indicated
in Ref. [10] yields

seff � 2 Re
Z

drjfb�r�j2

3
Z s0�2

0
dzt

µ
z 1

jxj
2

∂
t

µ
z 2

jxj
2

∂
. (6)

It is important to note that in the following the precise form
of fb will not be needed while the atomic transmission
function t�z � can be calculated in terms of the geometri-
cal slit width s0 and the van der Waals surface potential
TABLE I. Comparison of the bond lengths (�r�), binding energies (Eb), and s wave scattering lengths (a0) obtained in the present
work with recent theoretical predictions [2,17].

Work �r� �Å	 jEb j �mK	 a0 �Å	

Present 52 6 4 1.1 1 0.3�20.2 104 1 8�218
TTY [2] 51 1.32 99.5
HFD-B3-FCI1 [17] . . . 1.59 91.0
HFD-B3-FCI1 with retardation [17] . . . 1.5 6 0.1 94 6 2
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2C3�l3, where l is the distance from the surface [15]. A
change of variable z ! z 2 jxj�2 in Eq. (6) gives for the
inner integral

R�s02jxj��2
0 dzt�z �t�z 1 jxj�. In the middle

of the slits (z � s0�2 in Fig. 1) one has t�z � � 1 [15],
and since jxj is small compared to the slit width the inner
integral becomes

Z �s02jxj��2

0
dzt�z �t�z 1 jxj� �

Z s0�2

0
dzt�z �

3 t�z 1 jxj� 2
jxj
2

.

The spherical symmetry of fb implies �jxj� �R
drjxj jfb�r�j2 � �r��2. A Taylor expansion around

z 1 �jxj� gives after an elementary calculation

seff �

∑
2Re

Z s0�2

0
dzt�z �t�z 1 �r��2�

∏
2

�r�
2

, (7)

where higher order terms can be shown to be negligible.
The first term on the right-hand side of Eq. (7) accounts for
the reduction of s0 by the van der Waals interaction of each
atomic constituent with the grating bars. The bond length
�r� is determined from Eq. (7) by calculating t�z � with the
measured s0 and the C3 value for He from Ref. [15]. The
solid curve through the experimentally determined effec-
tive slit widths of 4He2 in Fig. 3 represents a least-squares
fit which yields �r� � 52 6 4 Å.

For potentials with a nearly resonant s wave bound state,
as in the case of the helium dimer interaction, the binding
energy is given by the approximate expression [16] jEbj �
h̄2�4m�r�2 where m is the 4He mass. In the case of the
Tang-Toennies-Yiu (TTY) potential [2], there is an upward
correction of 12%. The s wave scattering length is a0 �
2�r� [16] with a similar downward uncertainty. Table I
shows a comparison of the present results with theoretical
predictions of the perturbation theory TTY potential [2]
and of the HFD-B3-FCI1 potential, regarded as the most
accurate [17], with and without retardation corrections.

Size determination by transmission gratings should be
applicable also to other extended diatomic or polyatomic
molecules. An ideal candidate is the three-body helium
van der Waals molecule. Theory predicts the existence of
a ground state 4He3 and a single excited state 4He �

3 in the
helium trimer where the latter is believed to be an Efi-
mov state [5]. While the ground state is expected to be
extended on the scale of 1 nm the Efimov state should be
even larger than the helium dimer. Thus the extent to which
4He �

3 is present in a helium-trimer beam could be deter-
mined from the diffraction intensities due to its enormous
spatial extent. This could provide evidence for an Efimov
state [18].
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ing to us. Further, we thank W. Sandhas, L. W. Bruch,
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