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Suppression of Magnetic State Decoherence Using Ultrafast Optical Pulses
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It is shown that magnetic state decoherence produced by collisions in a thermal vapor can be sup-
pressed by the application of a train of ultrafast optical pulses.

PACS numbers: 32.80.Qk, 34.20.Cf, 34.50.Rk
The subject of decoherence has attracted a great deal
of attention in the past few years. In atomic vapors,
one source of magnetic state decoherence is collisions,
since collisions redistribute the population among differ-
ent Zeeman sublevels. The question that we address in this
paper is “How can one inhibit this magnetic state decoher-
ence by subjecting the atoms to additional external radia-
tion fields?” The key to suppressing decohering transitions
produced by a thermal bath is to perturb the relevant state
amplitudes on a time scale that is short compared with the
correlation time of the bath. Thus, to suppress spontaneous
decay, the decaying particle must be perturbed on a time
scale that is shorter than the correlation time of the vac-
uum field, an all but impossible task. On the other hand,
the correlation time of the collisional perturbations that
produce magnetic state decoherence is on the order of the
collision duration, typically of order 1 ps. It is possible to
apply several ultrafast optical pulses during a single colli-
sion in a manner that inhibits magnetic state decoherence.
As a consequence, one has a practical means for preserv-
ing magnetic state coherence in the presence of collisions.
It should be noted that related schemes have been proposed
for inhibiting decoherence in systems involving quantum
computation and control [1]. The relationship of suppres-
sion of magnetic state decoherence to the quantum Zeno
effect [2–4] is discussed at the end of the paper.

We envision an experiment in which “active atoms” in a
thermal vapor undergo collisions with a bath of foreign gas
perturbers. A possible level scheme for the active atoms is
depicted in Fig. 1. At some initial time, an ultrashort pulse
excites an atom from its ground state, having angular mo-
mentum J � 0, to the m � 0 sublevel of an excited state
having J � 1. The duration of the excitation pulse is much
shorter than the collision duration tc. As a result of elastic
collisions with the ground state perturbers, population in
the J � 1 sublevels equilibrate at a rate Gcol that is typi-
cally of order 107 108 s21 per Torr of perturber pressure.
The transfer to the m � 1 substate is probed by a circularly
polarized pulse acting on the J � 1, m � 1 ! J � 0 ex-
cited state transition, applied at a time G

21
col following the

initial excitation pulse. For the sake of definiteness, we as-
sume that the perturber pressure is such that equilibration
occurs in a time G

21
col � 0.1 1.0 ns. Spontaneous emis-

sion is neglected on this time scale.
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As was mentioned above, one must disrupt the coherent
evolution of a system from its initial to final state. In our
case, the coherent evolution from the initial m � 0 state to
the final m � 61 states is driven by the collisional inter-
action. Thus it is necessary to perturb the system on a time
scale that is short compared with the collision duration tc.
To do this, we apply a continuous train of ultrashort pulses
that couple the m � 0 level to the excited state having
J � 0 shown in Fig. 1. The pulses are assumed to have
duration tp ø tc and are assumed to be off resonance;
that is, the atom-field detuning is large compared with t21

p .
As such, each pulse simply produces an ac Stark shift of
the m � 0 sublevel of the J � 1 state, resulting in a phase
shift of this state amplitude. As a consequence, the exter-
nal pulses break the collision-induced, coherent evolution
of the atom from its initial m � 0 state to the m � 61
states. The pulse strengths can be chosen in a determin-
istic way so as to minimize the transition probability [1].
Rather than follow this approach, we assume that the pulse
strengths are chosen such that each phase shift is a random
number, mod 2p . In this way, the pulse train acts as an
irreversible bath. If many pulses occur during the colli-
sion duration tc, the atom is frozen in its initial state. It
is interesting to note that collisions, which are normally
viewed as a decohering process, must be viewed as a co-
herent driving mechanism on the time scales considered in
this work.

To obtain a qualitative understanding of this effect, it is
sufficient to consider a model, two-level system, consisting
of an initial state j0� (corresponding to the J � 1, m � 0
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FIG. 1. Energy level diagram. The collisional interaction
couples the magnetic sublevels in the J � 1 state.
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state) and a final state j1� (corresponding to the J � 1,
m � 1 state, for example). The Hamiltonian for this two-
state system is taken as

H � Vc�t� �j0� �1j 1 j1� �0j�

1 h̄
X

i

Ds�ti�tpd�t 2 ti� j0� �0j , (1)

where Vc�t� is a collisional perturbation that couples the
two, degenerate states, and Ds�ti� is the ac Stark shift
of state j0�, proportional to the intensity of the external
pulse occurring at t � ti . For simplicity, we take Vc�t�
to be a square pulse, Vc�t, b� � h̄b� b�, for 0 # t # tc.
The quantity b is the impact parameter of the collision.
The collision duration tc can be written in terms of the
impact parameter b characterizing the collision and the
relative active atom-perturber speed u as tc� b� � b�u.
Moreover, to simulate a van der Waals interaction, we set
b� b� � �C�b6

0� �b0�b�6, where C and b0 are constants
chosen such that 2C��b5

0u� � 1. The quantity b0 is an
effective Weisskopf radius for this problem. An average
over b will be taken to calculate the transition rate.

The external pulse train is modeled in two ways. In
model A, the pulses occur at random times with some
average separation T between the pulses. In model B,
the pulses are evenly spaced with separation T . In both
models, the pulse areas Ds�ti�tp are taken to be random
numbers between 0 and 2p . A quantity of importance is
the average number of pulses, n0 � tc� b0��T � b0��uT �,
for a collision having impact parameter b0.

A. Randomly spaced pulses.—The randomly spaced,
radiative pulses act on this two-level system in a manner
analogous to the way collisions modify atomic electronic-
state coherence. In other words, the pulses do not af-
fect the state populations, but do modify the coherence
between the levels. The pulses can be treated in an impact
approximation, such that during a collision, the time rate
of change of density matrix elements resulting from the
pulses is �r00 � �r11 � 0 and

�r10�r10 � �r01�r01 � 2G�1 2 e2iDs�ti �tp � � 2G , (2)

where G � T21 is the average pulse rate, and we have
used the fact that the pulse area is a random number
between 0 and 2p . Taking into account the collisional
coupling Vc�t, b� between the levels, one obtains evolu-
tion equations for components of the Bloch vector w �
r11 2 r00 � 2r11 2 1, y � i� r10 2 r01� as

dw�dx � U� y�y, dy�dx � 2U� y�w 2 n� y�y ,

(3)

where x � t�tc� b� is a dimensionless time, y � b�b0 is
a relative impact parameter, and U� y� � y25 and n� y� �
n0y are dimensionless frequencies. These equations are
solved subject to the initial condition w�0� � 21; y�0� �
0, to obtain the value r11�x � 1, y, n0� � �w�x � 1, y� 1

1��2. The relative transition rate S is given by
S�n0� � 2pNub2
0

Z `

0
y dyr11�x � 1, y, n0� , (4)

where N is the perturber density. A coefficient, R�n0�,
which measures the suppression of decoherence, can be
defined as

R�n0� �
Z `

0
y dyr11�x � 1, y, n0�

¡

Z `

0
y dyr11�x � 1, y, 0� . (5)

Solving Eqs. (3), one finds

r11�x � 1, y, n0� �

∑
1 2

r2

r2 2 r1

µ
er1 2

r1

r2
er2

∂∏ ¡
2 ;

(6a)

r1,2 �

µ
2n0y 6

q
�n0y�2 2 4y210

∂ ¡
2 . (6b)

It is now an easy matter to numerically integrate Eqs. (5)
to obtain R�n0�. Before presenting the numerical results,
we can look at some limiting cases which provide insight
into the physical origin of the suppression of decoherence.

A plot of r11�x � 1, y, n0� as a function of y � b�b0 is
shown in Fig. 2 for several values of n0. With decreasing
y, r11 increases monotonically to some maximum value
r11� ym� and then begins to oscillate about r11 � 1�2 with
increasing amplitude. One concludes from such plots that
two effects contribute to the suppression of coherence. The
first effect, important for large n0, is a reduction in the
value of ym. The second effect, important for n0 of order
unity, is a decrease in the value of r11� ym�. Let us examine
these two effects separately.

For very large n0, n
5�66
0 ¿ 1, one can approximate r11

over the range of y contributing significantly to the integral
(4) as r11�x � 1, y, n0� � �1 2 e2y211�n0��2. By evaluat-
ing the integrals in (5), one finds a suppression of deco-
herence ratio given by

R�n0� � 0.95�n
2�11
0 . (7)
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FIG. 2. Graph of r11 as a function of y � b�b0 for several
values of n0. For values 0 # y # 0.45 not shown on the graph,
r11 oscillates about an average value of 1�2. For n0 fi 0, the
oscillation amplitude increases with decreasing y.
2273



VOLUME 85, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 11 SEPTEMBER 2000
The n
22�11
0 dependence is a general result for a collisional

interaction that varies as the interatomic separation to the
minus 6th power. It can be understood rather easily. The
pulses break up the collision into n0y segments, on aver-
age. Since the relative phase changes randomly with each
radiation pulse, the final state probability amplitude, a1�t�,
undergoes a random walk, each of whose segments has a
length �1�2�y25xr , where xr is the (dimensionless) dura-
tion of a single step [�xr� � �n0y�21, �x2

r � � 2�n0y�22].
As a consequence, after n0y steps, r11 � �ja1�t�j2� �
� y210�4� �2�n0y�22� �n0y� � y211�2n0. Of course, r11
cannot exceed unity. One can define an effective relative
Weisskopf radius, yw , as one for which r11 � 1, namely
yw � bw�b0 � �2n0�21�11. The total transition rate varies
as y2

w � n
22�11
0 , in agreement with (7). As n0 � `, the

atom is frozen in its initial state.
For values of n0 of order unity, the dominant cause of

the suppression of decoherence is a decrease in the value
of r11� ym�, rather than the relatively small decrease in
ym from its value when n0 � 0. For values n0 # 3, ap-
proximately 45% of the contribution to the transition rate
S�n0� originates from y . ym, and, for these values of
n0, ym � p21�5 and r11� ym� � �1 1 e2n0�2p1�5 ��2. This
allows us to estimate the suppression of decoherence ra-
tio as R�n0� � �0.55 1 0.45�1 1 e2n0�2p1�5��2�, such that
R�1� � 0.93, R�2� � 0.88, R�3� � 0.84. These values
are approximately 70% of the corresponding numerical re-
sults, indicating that the decrease in r11� ym� accounts for
approximately 70% of the suppression at low n0, with the
remaining 30% coming from a decrease in ym. The first
few collisions are relatively efficient in suppressing de-
coherence. With increasing n0, the suppression process
slows, varying as n

22�11
0 . In Fig. 3, the suppression of de-

coherence ratio R�n0�, obtained by a numerical solution of
Eq. (5), is plotted as a function of n0.
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FIG. 3. Graph of the suppression of decoherence ratio R as a
function of n0 for randomly and uniformly spaced pulses.

B. Uniformly Spaced Pulses.—We consider now the
case of equally spaced pulses, having effective pulse ar-
eas that are randomly chosen, mod 2p . The time between
pulses is T , and n0 � tc�b0��T . For a relative impact
parameter y � b�b0, with m # n� y� � n0y # m 1 1,
where m is a positive integer or zero, exactly m or m 1 1
pulses occur. The effect of the pulses is calculated easily
using the Bloch vector. At x � 0, w � 21 and y � 0.
The Bloch vector then undergoes free evolution at fre-
quency U� y� � y25 up until the (dimensionless) time
of the first pulse, xs � ts�tc� b�. The pulse random-
izes the phase of the Bloch vector, so that the average
Bloch vector following the pulse is projected onto the
w axis. From x � xs to xs 1 T�tc� b� � xs 1 1�n� y�,
the Bloch vector again precesses freely and acquires a
phase UT�tc� b� � y25�n� y� � y26�n0, at which time
the next pulse projects it back onto the w axis. Taking into
account the periods of free precession and projection, and
averaging over the time xs at which the first pulse occurs,
one finds
w� y� � �1 2 n� y�� cos� y25� 1 n� y�
Z 1

0
dxs cos� y25xs� cos� y25�1 2 xs��; 0 # y # 1�n0 ,

w� y� � �m 1 1 2 n� y�� ��m 1 1��n� y� 2 1�21

3
Z 1�n� y�

12m�n� y�
dxs cos� y25xs� cosm21� y26�n0� cos� y25	1 2 xs 2 �m 2 1��n� y�
�

1 �n� y� 2 m� �1 2 m�n� y��21
Z 12m�n� y�

0
dxs cos� y25xs� cosm� y26�n0� cos� y25	1 2 xs 2 m�n� y�
� ;

m�n0 # y # �m 1 1��n0 for m $ 1 . (8)

In the limit that n0 ¿ 1, for all impact parameters that contribute significantly to the transition rate, approximately
n� y� pulses occur at relative impact parameter y, implying that w� y� � cosn� y� � y25�n� y�� and

R�n0� �
�1 2 cosn0y� y26�n0��

�1 2 cos� y25��
�

�1 2 �1 2 y212�2n2
0�n0y�

�1 2 cos� y25��
�

�1 2 e2y211�2n0�
�1 2 cos� y25��

�
0.84

n
2�11
0

, (9)

which is the same functional dependence found for the randomly spaced pulses. Note that the form 	1 2

cosn� y�� y25�n� y��
 is identical to that found in theories of the Zeno effect [2–4].
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The suppression of decoherence ratio R�n0�, obtained
from Eqs. (5) and (8) [using r11 � �1 1 w��2], is plotted
in Fig. 3. The fact that it lies below that for randomly
spaced pulses is due mainly to the fact that the average
value of the square of the time between pulses in the
randomly spaced pulse model is twice that of the equally
spaced pulse model [note that the right-hand sides of
Eqs. (7) and (9) are in the ratio 22�11]. The oscillations in
R�n0� appear to be an artifact of our square pulse collision
model. In the absence of the pulses, the first maximum
in the transition cross section occurs for ymax � �p�21�5,
corresponding to a p collision pulse. With increasing n0,
the pulses divide the collision duration into approximately
n� y� equal intervals. If these pulse intervals are odd or
even multiples of p , one can enhance or suppress the
contribution to the transition rate at specific impact pa-
rameters. Numerical calculations carried out for a smooth
interatomic potential do not exhibit these oscillations.

Discussion.—Although the collisional interaction has
been modeled as a square pulse, the qualitative nature of
the results is unchanged for a more realistic collisional
interaction, including level shifts. Although the pulses
are assumed to drive only the J � 1, m � 0 ! J � 0,
excited state transition, it is necessary only that the incident
pulses produce different phase shifts on the J � 1, m � 0
and J � 1, m � 1 state amplitudes.

To observe the suppression of decoherence, one could
use Yb as the active atom and Xe perturbers. The Weis-
skopf radius for magnetic decoherence is about 1.0 nm [5],
yielding a decoherence rate of �1010 s21 at 500 Torr of
Xe pressure at 300 ±C, and a collision duration tc� b0� �
2.5 ps. Thus, by choosing a pulse train having pulses of
duration tp � 100 fs, separated by 0.5 ps, it is possible
to have 5 pulses per collision. If an experiment is car-
ried out with an overall time of 100 ps (time from ini-
tial excitation to probing of the final state), one needs
a train of about 200 pulses. To achieve a phase shift
Dstp of order 2p and maintain adiabaticity, one can take
the detuning d � 3 3 1013 s21 and the Rabi frequency
V � 1 3 1014 s21 on the J � 1, m � 0 ! J � 0, ex-
cited state transition [6]. The corresponding, power den-
sity is �1.5 3 1011 W�cm2, and the power per pulse is
�150 mJ (assuming a 1 mm2 focal spot size). This is a
rather modest power requirement. With 5 pulses/collision
duration, one can expect a relative suppression of magnetic
state decoherence of order 40%.

Finally, we should like to comment on whether or not
the effect described in this work constitutes a quantum
Zeno effect [2–4]. Normally, the quantum Zeno effect
is presented as a projection of a quantum system onto a
given state as a result of a measurement on the system.
In an experiment of Itano et al. [3], a radio frequency pi
pulse having a duration on the order of 250 ms was applied
to a ground state hyperfine transition. At the same time,
a series of radiation pulses was used to drive a strongly
coupled ground to excited state uv transition. The rf and
strong transitions shared the same ground state level. Itano
et al. showed that excitation of the rf transition could be
suppressed by the uy pulses. They interpreted the result
in terms of collapse of the wave function—spontaneous
emission from the excited state during the uv pulses is
a signature that the uv pulse projected the atom into its
ground state; the lack of such spontaneous emission im-
plies projection into the final state of the rf transition. Each
pulse is said to constitute a measurement, since it is suf-
ficiently long to produce a high likelihood of spontaneous
emission whenever the atom is “projected” into the initial
state. After each measurement pulse, the off-diagonal den-
sity matrix element for the two states of the rf transition is
identically equal to zero. In our experiment involving off-
resonant pulses, the number of Rayleigh photons scattered
during each applied pulse is much less than unity. As such,
there is no measurement and no quantum Zeno effect, even
if suppression of magnetic state decoherence occurs.

The experiment of Itano et al. could be modified to al-
low for a comparison with the theory presented herein, and
to observe the transition into the quantum Zeno regime.
If the pulses that drive the strong transition are replaced
by a sequence of off-resonant pulses, each pulse having
a duration tp much less than the time, Tp , required for
the pi pulse to drive the weak transition, and each pulse
having an effective area, Dstp � �V2�4d�tp, that is ran-
dom in the domain �0, 2p�, then the pulses will suppress
the excitation of the weak transition (it is assumed that
V�d ø 1). If the upper state decay rate is g, then the av-
erage number of Rayleigh photons scattered during each
pulse is n � �V�4d�2gtp. For n , 1, there is suppres-
sion of the transition rate as in our case, while, for n * 1,
there is suppression and a quantum Zeno effect. There is
no average over impact parameter, since exactly �Tp�T � or
��Tp�T � 1 1� pulses occur in a given interval Tp , where
�x� indicates the integer part of x.
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