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Reconstruction of a Scalar-Tensor Theory of Gravity in an Accelerating Universe

B. Boisseau,1 G. Esposito-Farèse,2,3 D. Polarski,1,3 and A. A. Starobinsky4,5

1Laboratoire de Mathématique et Physique Théorique, UPRES-A 6083 CNRS, Université de Tours,
Parc de Grandmont, F 37200 Tours, France

2Centre de Physique Théorique, CNRS Luminy, Case 907, F 13288 Marseille Cedex 9, France
3Département d’Astrophysique Relativiste et de Cosmologie, Observatoire de Paris-Meudon, F 92195 Meudon Cedex, France

4Landau Institute for Theoretical Physics, 117334 Moscow, Russia
5Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge CB3 0EH, United Kingdom

(Received 21 January 2000)

The present acceleration of the Universe strongly indicated by recent observational data can be mod-
eled in the scope of a scalar-tensor theory of gravity. We show that it is possible to determine the structure
of this theory along with the present density of dustlike matter from two observable cosmological func-
tions: the luminosity distance and the linear density perturbation in the dustlike matter component as
functions of redshift. Explicit results are presented in the first order in the small inverse Brans-Dicke
parameter v21.

PACS numbers: 98.80.Cq, 04.50.+h
Recent observational data on type-Ia supernovae ex-
plosions at high redshifts z � a�t0�

a�t� 2 1 � 1 obtained
independently by two groups [1,2], as well as numerous
previous arguments (see the recent reviews [3,4]), support
the existence of a new kind of matter in the Universe
whose energy density not only is positive but also domi-
nates the energy densities of all previously known forms
of matter [here a�t� is the scale factor of the Friedmann-
Robertson-Walker (FRW) isotropic cosmological model,
and t0 is the present time]. This form of matter has a
strongly negative pressure and remains unclustered at
all scales where gravitational clustering of baryons and
(nonbaryonic) cold dark matter (CDM) is seen. Its gravity
results in the present acceleration of the expansion of the
Universe: ä�t0� . 0. In a first approximation, this type
of matter may be described by a constant L term in the
gravity equations as first introduced by Einstein. However,
a L term could also be slowly varying with time. If so,
this will be determined from observational data.

In particular, if we use the simplest model of a variable
L term (also called quintessence in [5]) borrowed from
the inflationary scenario of the early Universe, namely,
an effective scalar field F with some self-interaction po-
tential U�F� minimally coupled to gravity, then the func-
tional form of U�F� can be determined from observational
cosmological functions: either from the luminosity dis-
tance DL�z� [6,7] or from the linear density perturbation
in the dustlike component of matter in the Universe dm�z�
for a fixed comoving smoothing radius [6]. However, this
model cannot account for any future observational data, in
particular, for any functional form of DL�z�. This happens
because a variable L term in this model satisfies the weak-
energy condition ´L 1 pL $ 0. In terms of the observ-
able quantity H�z� � �a�t��a�t� describing the evolution of
the expanding Universe at recent epochs, the following in-
equality must be satisfied [4]:
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dH2�z�
dz

$ 3Vm,0H2
0 �1 1 z�2. (1)

Here, H0 � H�z � 0� is the Hubble constant, and Vm,0
is the present energy density of the dustlike (CDM 1
baryons) matter component in terms of the critical density
´crit � 3H2

0 �8pG (c � h̄ � 1, and an index 0 stands for
the present value of the corresponding quantity). Here,
we assume that the Universe is (approximately) spatially
flat, in accordance with both the prediction of the sim-
plest versions of the inflationary scenario of the early Uni-
verse and recent observational data on the location of the
first acoustic (Doppler) peak in the angular power spec-
trum of cosmic microwave background (CMB) tempera-
ture anisotropies [8]. Note that the inequality (1) saturates
when the L term is exactly constant.

It is not clear from the existing data whether (1) is satis-
fied at all. Actually, the opposite holds: An attempt to re-
construct U�F� from the supernovae data [9] and fitting of
existing data to a model with a linear equation of state for
the L term pL � w´L, with w , 21 [10], shows that the
possibility of violation of inequality (1), though strongly
restricted, is not completely excluded. Hence it is natu-
ral and important to consider a variable L term in a more
general class of scalar-tensor theories of gravity, where the
requirement (1) does not arise. Moreover, this generaliza-
tion of general relativity (GR) is inspired by present, more
fundamental, quantum theories, such as M theory. In these
theories, the scalar field F is just the dilaton field; hence
we shall call it so below.

Thus, we are interested in a universe where gravity is
described by a scalar-tensor theory, and we consider the
Lagrangian density in the Jordan frame [11]

L �
1
2 �F�F�R 2 gmn≠mF≠nF� 2 U�F� 1 Lm�gmn� ,

(2)

where Lm describes dustlike matter and F�F� . 0.
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This corresponds to the Brans-Dicke parameter v �
F��dF�dF�2 . 0. One may also introduce a function
Z�F� in front of the kinetic term �≠mF�2, but it can be set
either to 1 or to 21 by a redefinition of the scalar field [the
standard Brans-Dicke choice for Z�F� is Z�F� � v�F].
Under the assumption of the absence of ghosts in the
theory, the second possibility requires the Brans-Dicke
parameter to lie in the range 23�2 , v , 0 (see [12]
for more details). Since this clearly contradicts solar
system tests of GR either in the absence of U�F� or
for U�F� satisfying the condition (8) below for scales
of galaxies and clusters of galaxies, we will not discuss
this possibility further. We do not introduce any direct
coupling between F and Lm (though this possibility could
also be envisaged). This guarantees that the weak equiva-
lence principle is exactly satisfied (universality of free
fall of laboratory-size objects), and also that fundamental
constants, such as, e.g., the fine-structure constant, do
not change with time in this theory. This is in very good
agreement with laboratory, geophysical, and cosmological
data [13–15].

Such a scalar-tensor theory was recently considered as
a model for a variable L term for some special choices
of F�F� and U�F� (see [16]). Our approach is just
the opposite: We want to derive these functions from
observational data. Since we have to determine two func-
tions F�F� and U�F�, we will need both observational
functions DL�z� and dm�z�, in contrast to GR. Then the
reconstruction problem can be uniquely solved, as will be
shown below. Note that the angular diameter as a function
of z provides the same information as DL�z� (see [4] and
the second reference in [6]).

It is most appropriate for us to work in the Jordan frame
(JF), in which the various physical quantities are those
that are being measured in experiments, even though the
Einstein frame (EF) often provides a better mathematical
insight. In addition, the dilaton appears to be directly
coupled to dustlike matter in the EF, in contrast to the JF.
For a flat FRW universe with ds2 � 2dt2 1 a2dx2, the
background equations in the JF are then

3FH2 � rm 1
�F2

2
1 U 2 3H �F , (3)

22F �H � rm 1 �F2 1 F̈ 2 H �F . (4)

Their consequence is the equation for the dilaton itself:

F̈ 1 3H �F 1
dU
dF

2 3� �H 1 2H2�
dF
dF

� 0 . (5)

By combining Eqs. (3) and (4) and changing the argument
from time t to redshift z, we obtain the following basic
equation for F�z�:
F00 1

∑
� lnH�0 2

4
1 1 z

∏
F0 1

"
6

�1 1 z�2 2
2� lnH�0

1 1 z

#
F �

2U
�1 1 z�2H2 1 3�1 1 z�

µ
H0

H

∂2

F0Vm,0 , (6)
where the prime denotes the derivative with respect to z.
The effective value of Newton’s gravitational constant

GN in Eqs. (3) and (4) is given by the formula GN �
1�8pF. We shall use its present value GN ,0 in the defini-
tion of the critical density ´crit. On the other hand, GN ,0
is not the quantity measured in laboratory Cavendish-type
and solar-system experiments. For a massless dilaton, the
effective gravitational constant between two test masses is
given by

Geff �
1

8pF

√
2F 1 4�dF�dF�2

2F 1 3�dF�dF�2

!
. (7)

In our case, the dilaton is massive, so expression (7) will
be valid for physical scales R such that

R22 ¿ max

µÇ
d2U
dF2

Ç
, H2, H2

Ç
d2F
dF2

Ç∂
. (8)

Previously, the expression Geff was known from the post-
Newtonian expansion; below we rederive it by using the
cosmological perturbation theory.

Let us now list the restrictions of the theory (2) which
follow from solar-system and cosmological tests. The
post-Newtonian parameters b and g for this theory are

g � 1 2
�dF�dF�2

F 1 2�dF�dF�2 , (9)

b � 1 1
1
4

F�dF�dF�
2F 1 3�dF�dF�2

dg

dF
. (10)
Using the upper bounds on �g 2 1� from solar-system
measurements [17,18], we get

v21
0 � F21

0 �dF�dF�2
0 , 4 3 1024. (11)

So, GN ,0 and Geff,0 coincide with better than 2 3 1024

accuracy. On the other hand, the difference between GN

and Geff may be larger at redshifts z � 1 since neither
the upper limit on b nor the present experimental bound
j �Geff�Geffj , 6 3 10212 yr21 [18] significantly restrict
�d2F�dF2�0. Note that we cannot use the nucleosynthesis
bound on the change of Geff since that time as the behavior
of Geff during the intermediate period is unknown, unless
we make additional assumptions.

The theory (2) describes a variable L term with desired
properties if the following three conditions are satisfied:

(i) The L term is dynamically important at present,
namely, VL,0 � 0.7 � 2Vm,0, or√

�F2

2
1 U 2 3H �F

!
0

� 0.7´crit � 2rm,0 . (12)

(ii) The L term has a sufficiently large negative pressure
to provide acceleration of the present Universe. The con-
dition ä0 . 0 reads as follows:

2U0 . � rm 1 2 �F2 1 3F̈ 1 3H �F�0 . (13)

(iii) The dark matter described by the L term remains
unclustered at scales up to R � 10h21�1 1 z�21 Mpc and
2237
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probably even more (here h � H0�100 km s21 Mpc21).
To achieve this, it is sufficient to assume that the inequality
(8) is satisfied for all scales in question.

The first step of our program is purely kinematical: we
determine H�z� from DL�z� as in GR,

1
H�z�

�

µ
DL�z�
1 1 z

∂0
. (14)

The first attempt to obtain H�z� from DL�z� found in [1,2]
(without assuming any underlying physical model for a L

term) was performed in [8]. The functional dependence
of DL�z� on the cosmological parameters, such as Vm,0, is
of course model dependent. If Vm,0 is known from other
tests, we can already find at that stage of the reconstruction
a quantity such as the present effective equation of state of
the dilaton from the formula (cf. [9])

w0 �
pL,0

´L,0
�

�2�3� �d lnH�dz�0 2 1
1 2 Vm,0

. (15)
2238
´L,0 contains the term 23H0
�F0, so that Vm,0 1 VL,0 � 1.

The dilaton equation of state can also be determined for
z . 0; one has only to define what should be called
the pressure and the energy density of the dilaton in
general. Actually, we will show below that Vm,0 is itself
self-consistently determined from our approach, so no
additional information is required to find w�z�.

In contrast to GR, Eq. (6) is no longer sufficient to de-
termine U�z�; one should also know F�z�. For this purpose
we will use dm�z�. We consider perturbations in the longi-
tudinal gauge ds2 � 2�1 1 2f�dt2 1 a2�1 2 2c�dx2.
By working in Fourier space [a spatial depen-
dence exp�ik ? x� with k � jkj is assumed], the
following equations are obtained:

f � �y � c 2 dF�F , (16)

�dm � 2
k2

a2 y 1 3
d�c 1 Hy�

dt
, (17)

where the gauge invariant quantity dm � �drm��rm 1

3Hy, and y is the peculiar velocity potential of dustlike
matter. We also get
23 �F �f 2

µ
2

k2

a2 F 2 �F2 1 3H �F

∂
f � rmdm 1 3

�F
F

d �F 1

√
k2

a2 2 6H2 2 3
�F2

F2

!
dF 1 �Fd �F 1 3H �FdF 1 dU ,

(18)

and the equation for the dilaton fluctuations dF:

dF̈ 1 3Hd �F 1

"
k2

a2 2 3� �H 1 2H2�
d2F
dF2 1

d2U
dF2

#
dF �

"
k2

a2 �f 2 2c� 2 3�c̈ 1 4H �c 1 H �f�

#
dF
dF

1 �3 �c 1 �f� �F 2 2f
dU
dF

. (19)
Let us now consider sufficiently small scales R �
2pa�k for which the inequality (8) is well satisfied.
For example, if dm�z� is determined from the abundance
of rich clusters of galaxies, then the relevant comoving
scale is R � 8h21�1 1 z�21 Mpc. If the right-hand
side (r.h.s.) of Eq. (8) is �H2, then the corresponding
small parameter is R2H2

0 � 1025. Note that we have
another parameter, v21, which is small at the present
time [Eq. (11)], but it need not be so small in the past.
Also, this parameter may be larger than a2H2�k2. For
this reason, we will first keep it.

The solution of Eqs. (16)–(19) in the formal short-
wavelength limit k ! ` can be found following the
analytical method used in [6] in the GR case, confirmed
numerically in [19]. The idea is that the leading terms
in Eqs. (16)–(19) are either those containing k2 or those
with dm. Then, by using (17) and the left-hand side (l.h.s.)
of Eq. (16), the standard form of the equation for dustlike
matter density perturbation is as follows:

d̈m 1 2H �dm 1 k2a22f � 0 . (20)

Now we consider the solution of Eq. (19) of interest to
us, for which jdF̈j ø k2a22jdFj. It corresponds to the
growing adiabatic mode. So, keeping terms with k2 in
Eq. (19) and then using the r.h.s. of Eq. (16), we obtain
dF � �f 2 2c�
dF
dF

� 2f
FdF�dF

F 1 2�dF�dF�2 . (21)

In the GR case, dF ~ k22f in the limit k ! `, so matter
producing the L term is not gravitationally clustered at
small scales (physically, due to free streaming). This is
not so in scalar-tensor gravity: The dilaton remains partly
clustered for arbitrarily small scales, this clustering being
small only because v is large.

Keeping only terms with k2 or dm in Eq. (18), we get the
expression of f through dm and dF. Finally, by inserting
it into Eq. (20) and using Eq. (21), we arrive to the closed
form of the equation for dm:

d̈m 1 2H �dm 2 4pGeffrmdm � 0 , (22)

with Geff defined in (7) above. In terms of z, (22) reads

H2d00
m 1

√
�H2�0

2
2

H2

1 1 z

!
d0

m �
3
2

�1 1 z�H2
0

3
Geff�z�
GN ,0

Vm,0dm .

(23)

Equation (22) does not contain k2 at all. Thus, its
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solutions, as well as the corresponding expressions for
dF, do not oscillate with the frequency k�a for k ! `.
This justifies the assumption about dF̈ made above.

Extracting H�z� [from DL�z�] and dm�z� from ob-
servations with sufficient accuracy, we can reconstruct
Geff�z��GN ,0 analytically. Since, as follows from Eq. (11),
the quantities Geff,0 and GN ,0 coincide with better than
0.02% accuracy, Eq. (23) taken at z � 0 also gives the
value of Vm,0 with the same accuracy. Thus, in principle,
no independent measurement of Vm,0 is required.

The resulting equation Geff�z� � p�z�, where p�z� is
a given function following from observational data, can
be transformed into a nonlinear second order differential
equation for F�z� if we exclude dF (which appears in
dF�dF) using the background equation (4), which reads

F02 � 2F00 2

∑
�lnH�0 1

2
1 1 z

∏
F0 1

2�lnH�0

1 1 z
F

2 3�1 1 z�
H2

0

H2 F0Vm,0 . (24)

Therefore, F�z� can be determined by solving this equation
provided F0 �� 1�8pGN ,0� and F0

0 are known.
However, this procedure can be greatly simplified

under reasonable assumptions, and by taking into account
the small present values of v21 � F21�dF�dF�2 and
�Geff�Geff. Indeed, the value of v21 for 0 # z & 1 can
be estimated from the first terms of its Taylor expansion
v

21
0 1 z�dv21�dz�0. Neglecting contributions propor-

tional to v
21
0 , we then get v21 � 2zl�d2F�dF2�0,

with l � 2�d lnF�dF�0
�F0�H0, whereas �Geff�Geff �

lH0�1 2 �d2F�dF2�0�. If �d2F�dF2�0 differs sig-
nificantly from 1, we can thus conclude that
v21 & j2 �Geff�H0Geffj & 0.25. On the other hand, if
�d2F�dF2�0 happens to be close to 1, we can still assume
that there is no special cancellation of large terms in the
r.h.s. of Eq. (3), and therefore that �F2

0 & 6F0H2
0 . The

above estimate for v21 then gives v21 & 2
p

6�v0 & 0.1.
In both cases, we thus find that Geff � GN in the range of
z involved with better than �10% accuracy. Therefore, in
the first approximation in v21, Geff�z� � 1�8pF�z� and
Eq. (23) can be used to determine F�z� unambiguously.
Small corrections to this result can be taken into account
using perturbation theory with respect to the small pa-
rameter v21. After F�z� is found, the potential U�z� is
determined from Eq. (6).

Finally, by using Eq. (24) we find F�z� by simple in-
tegration. After that, both unknown functions F�F� and
U�F� are completely fixed as functions of F 2 F0 in that
range probed by the data. This means that there is no in-
ternal ambiguity (sometimes called “cosmic confusion”) in
our reconstruction program. Equations (6), (23), and (24),
giving the subsequent steps of the reconstruction, consti-
tute the fundamental result of our letter.

Our results generalize those obtained in GR [6] and con-
strain any attempt to explain a varying L term using scalar-
tensor theories of gravity. Good data on dm�z� expected
to appear soon from observations of clustering and the
abundance of different objects at redshifts �1 and more,
as well as from weak gravitational lensing, together with
better data on DL�z� from more supernovae events, will
allow implementation of the reconstruction program and
determination of the microscopic Lagrangian. After that,
many other (mostly degenerate) tests, such as the age of
the Universe or the location of acoustic (Doppler) peaks
in the angular power spectrum of the CMB temperature
anisotropies, may be used to check the predictions of this
phenomenological scalar-tensor cosmology.
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