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Nonstationarity Induced by Long-Time Noise Correlations in the Langevin Equation
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We solve the generalized Langevin equation driven by a stochastic force with a power-law autocorre-
lation function. A stationary Markov process has been applied as a model of the noise. However, the
resulting velocity variance does not stabilize but diminishes with time. It is shown that algebraic dis-
tributions can induce such effects. Results are compared to those obtained with a deterministic random
force. Consequences for the diffusion process are also discussed.

PACS numbers: 05.40.Ca, 02.50.Ey, 05.60.–k
Modeling a physical system in terms of the Langevin
formalism must take into account the nature and origin of
the stochastic force. Usually that force is taken in the form
of the white noise but in many cases that is an unrealistic
idealization. Among the systems possessing a finite noise
correlation time, those with power-law (algebraic) correla-
tions are especially interesting because of a lack of char-
acteristic time scale and divergent moments. Such systems
are not unusual. The algebraic random force autocorrela-
tion function (FAF) appears in the fluid dynamics [1,2] and
the linearized hydrodynamics [3]. For such phenomena as
the noise-induced Stark broadening [4] and nuclear col-
lisions [5], correlation functions proportional to 1�t have
been found. The latest form of correlations is of special
importance for molecular dynamics because it corresponds
to the problem of scattering inside a periodic lattice [6].

For systems with finite noise correlation time, the or-
dinary Langevin equation must be generalized to ensure
proper fluctuation-dissipation relations [7]. The general-
ized Langevin equation has been introduced by Mori [8],
later independently derived by Lee [9], as a useful descrip-
tion of many-body Hermitian systems. In the absence of
external potential, this equation has the form

m
dy�t�

dt
� 2m

Z t

0
K�t 2 t�y�t� dt 1 F�t� , (1)

where F�t� is a stochastic force and K�t� denotes the
retarded friction kernel. The stochastic force describes
deviations from an average motion due to nonlinear effects,
the initial transient process, and fluctuations [8]. A direct
solution of Eq. (1) is possible for some many-body sys-
tems, e.g., an electron gas model and a spin van der Waals
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model [10]. The fluctuation-dissipation theorem imposes
the relation [11]: K�t� � �F�0�F�t��S�mT , with tempera-
ture T and mass m. The average � �S is taken over an
equilibrium ensemble, with a stationary probability distri-
bution. We assume that F�t� can be an arbitrary random
function satisfying the condition �F�t��S � 0 and possess-
ing the following covariance:

CF�t� � �F�0�F�t��S �

Ω
bT�e for t # e

bT�t for t . e
, (2)

where e is a small number. The coefficient b we set equal
to one. The solution of Eq. (1) with the initial condition
y�0� � 0 takes the form [12]

y�t� � g�t� 1
Z t

0
R�t 2 t�g�t� dt , (3)

where g�t� � m21
Rt

0 F�t� dt and the resolvent is
given by R�t� � exp�2at� �c1 sinbt 1 c2 cosbt� 1

m
R`

0 x exp�2tx����mx 1 Ei1�ex� 2 1	2 1 p2
 dx. The
modified integral exponential function Ei1�x� is defined
by the series: Ei1�x� � g 1 lnx 1

P`
n�1 xn�n! n,

where g � 0.577 215 7 . . . is the Euler constant. The
other constants are fixed in the following at the values:
a � 23.528 32, c1 � 24.766 73, c2 � 25.354 98, and
b � 2.499 75, corresponding to e � 0.01 and m � 1.

The stochastic trajectories are not yet determined by
Eq. (3) since the force F�t� is not completely defined by
its first two moments. However, some average quantities
depend only on FAF and can be derived. In the following,
we will refer to those results as “formal solutions” (FS).
In particular, the FS for the second moment of the velocity
distribution, �y2�S�t�, can be obtained directly from (3):
�y2�S�t� � 2
Z t

0
dt �t 2 t�CF�t� 1 2

Z t

0
dt

Z t

0
ds1

Z t

0
ds2 R�t 2 t�CF�js1 2 s2j�

1
Z t

0
dt

Z t

0
ds

Z t

0
ds1

Z s

0
ds2 R�t 2 t�R�t 2 s�CF�js1 2 s2j� . (4)
Some of the above integrals have to be performed numeri-
cally. The result for T � 1 is presented in Fig. 1. As
expected, the system reaches the equilibrium state.

Alternatively, we can introduce a concrete stochastic
process possessing the properties required for F�t�,
simulate stochastic trajectories by a Monte Carlo method,
and calculate �y2�S averaging over those trajectories. We
apply the “kangaroo process” (KP). It is defined [13] as
a stepwise random function: F�t� � Fi � const in the
time interval ti # t , ti11. The length of interval of
constant F, s, is a function of the value of the process
© 2000 The American Physical Society
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FIG. 1. The velocity variance calculated from Eq. (4) (solid
line) and resulted from both simulations, with the KP (long-
dashed line) and using the deterministic random force (dots).
The short-dashed line shows �y2�S�t� calculated from Eq. (4)
with the effective temperature bT �t� � cT ŝ2�t�, where cT �
0.34. The other parameters: T � 1, m � 1, and e � 0.01.

itself. The KP is a stationary Markov process, determined
by a stationary probability distribution PKP �F�. It can be
easily defined for arbitrary covariance. We get [14] the
required form (2) by choosing PKP �F� � 1��2a� � const
for F [ �2a, a�, zero elsewhere, where a �

p
3�h with

h � e�T . The time increment corresponding to a given
F follows from the formula s � 3ajFj23. Thus s assumes
values between h and infinity and its density distribution
is of the form

P�s� � �h1�3�3�s24�3u�s 2 h� , (5)

where u�x� is the step function. Moments of F can easily
be obtained by averaging over the uniform distribution
PKP�F�. We get �F�S � 0 and s2 � �F2�S � 1�h. Since
2PKP�jFj�djFj � P�s�ds, we can average also over P�s�:

s2 � 3h21�3
Z `

0
s22�3P�s� ds , (6)

with the same result. Also the KP covariance [13,14], CKP ,
can be expressed in terms of the distribution P�s�

CKP �t� � 3h21�3
Z `

0
s22�3 exp�2t�s�P�s� ds . (7)

Inserting F�t� into Eq. (3) allows us to determine the ve-
locity time series of the Brownian particle. The variance
at a given time t is obtained simply by calculating y�t�,
squaring it and averaging over many trajectories. Figure 1
presents the result: �y2�S does not stabilize at the expected
value �y2�S � T�m, but instead it dwindles with time,
obeying the approximate relation �y2�S�t� � t20.67.

The above outcome is surprising because, according to
(4), �y2�S is completely determined by the covariance of
F and every simulation satisfying (2) should reproduce
the FS. In order to understand the origin of that inconsis-
tency, let us reconsider in detail how the stochastic force
value actually enters the Langevin equation. Evaluation
of the Brownian particle velocity requires the value of F
at a given time t. For that purpose the distribution of s
is crucial because this value follows from the length of
current interval in the stepwise evolution of KP. How-
ever, the requirement that we choose only those intervals
which contain the time t imposes some bias; e.g., longer
intervals are more probable. Therefore a distribution we
actually use in the Langevin equation, the “effective” in-
terval distribution bP�s, t�, may not be identical with P�s�.
Its cumulative distribution function, F�s, t�, can be de-
rived in the following way: First let us consider s # t
and assume that t is found in n 1 1 interval, i.e., Sn �
s1 1 s2 1 · · · 1 sn , t and Sn11 . t. The probability
that the sum of n intervals yields a value between x and
x 1 dx we denote by Pn�x�dx, provided that each com-
ponent has the distribution P�s�. The distribution function
F�s, t� is just equal to the conditional probability that an
interval is larger than t 2 x, for any x between t 2 s and
t and any n from 1 to N , where N denotes the integer part
of t�h: F�s, t� �

PN
n�1

Rt
t2s Pn�x� dx

Rs
t2x P�j� dj. In-

troducing S�x� �
PN

n�1 Pn�x� and inserting P�x� from (5),
we get the following equation:

F�s, t� � h1�3
Z t

t2s
S�x� ��t 2 x�21�3 2 s21�3	 dx

for h # s # t . (8)

For s . t the lower limit of integration extends to zero.
Moreover, we have to take into account also events for
which t is contained already in the first interval. The final
formula reads:

F�s, t� � h1�3

(Z t

0
S�x� ��t 2 x�21�3 2 s21�3	 dx

1 t21�3 2 s21�3

)
for s . t . (9)

The direct evaluation of S�x� is very difficult. We can
avoid it utilizing the normalization condition F�`, t� � 1.
The function S�x� must then satisfy the integral equationZ t

0
S�x� �t 2 x�21�3 dx 1 t21�3 � h21�3, (10)

called Abel’s equation. It possesses a weakly singular
kernel, depending only on the difference of its arguments.
Therefore we can apply the Laplace transforms technique
to solve it [15]. The solution is of the form

S�x� � cGh21�3x22�3 2 d�x� , (11)

where a constant cG � 1��G�1�3�G�2�3�	 � 0.2757 . . .
contains the Gamma function. Inserting S�x� to (8) and (9)
and evaluating integrals gives us the expression for F�s, t�.
To obtain the required probability distribution bP�s, t�,
we have to differentiate F�s, t� over s. The final result
is simple:
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bP�s, t� �

Ω
cG�t1�3 2 �t 2 s�1�3	s24�3 for h # s # t
�cGt1�3 1 h1�3�3�s24�3 for s . t

.

(12)

The effective interval distribution appears to be time de-
pendent and consisting of two branches which do not join
smoothly. We encounter a similar problem asking about
the meantime we must wait for a bus, providing we know
the average time interval between subsequent bus arrivals
(t). The answer is not t�2, as one could expect, but just
t. This "waiting-time paradox" [16] can be elucidated by
calculating the effective, time-dependent probability dis-
tribution, analogous to (12). In that case, however, the
original distribution is an exponential which results in the
fast equilibrization, and the effective distribution asymp-
totically becomes time independent. For bP�s, t� it never
happens. Moreover, since the probability bP�s . t, t� �R

`
t

bP�s, t� ds � 3cG � 0.83 does not diminish with time
but remains constant, the entire distribution shifts with time
towards long intervals. In fact, this outcome is not unex-
pected because all moments of bP�s, t�, as well as of P�s�,
are divergent. On the other hand, long intervals correspond
to small values of the process itself, which points out a rea-
son of declining of the variance. To derive expression for
the effective variance ŝ2�t�, we can use Eq. (6) substitut-
ing bP�s, t� for P�s�. Evaluation of the integral gives us the
final formula

ŝ2�t� � cGh21�3�3 ln3�2 1 p
p

3 �6 1 ln�t�h�	t22�3

�t ¿ h� . (13)

Hence the variance really decreases with time [17]. The
KP covariance must also be modified. Replacing P�s�
in Eq. (7) by bP�s, t0�, where t0 is an initial time, and
evaluating integrals we get the effective covariancebCKP�t, t0� � cGh21�3t

1�3
0 t21�3 2 exp�2t�2t0�G�1�3�

3 W21�3,21�2�t�t0�	 ,
(14)

where Wa,b�x� is the Whittaker function [18]. This result
is quite different from the original covariance (2) and ex-
plains why the simulation does not agree with the FS (4).bCKP�t, t0� � t21 for large t, but it depends also on t0. On
the other hand, according to Eq. (4) the velocity variance is
proportional to the temperature T � es2. The declining
of ŝ2 with time means that T can no longer be regarded
as a constant parameter. Instead we can define an effective
temperaturelike time-dependent function bT �t� � cT ŝ2�t�,
where the constant cT has been introduced to ensure a
proper normalization, and modify the FS. The shape of
the resulting function, presented in Fig. 1, is asymptoti-
cally the same as for the Monte Carlo simulation. Both
curves coincide in this region for cT � 0.34.
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The above conclusions imply that the FS may not be a
correct prediction for some problems involving algebraic
correlations (e.g., critical phenomena, hydrodynamics).
Accordingly, they should be handled with caution. Con-
versely, an experimental evidence of declining variance in
such systems does not necessarily mean that the Langevin
formalism obeying standard fluctuation-dissipation theo-
rems does not apply. In any individual case one should
examine the distribution P�s�, the shape of which for
large s decides whether the velocity variance equilibrates
at a finite value. Is such behavior possible at all for the
covariance (2)? The FS would be valid for a steep P�s�.
The fastest decaying distribution one can obtain with the
KP for (2) declines asymptotically like s22 [14]. Since
also for this distribution all moments diverge, we expect
similar effects as for (5).

Another possibility is to apply a deterministic pro-
cess, instead of the Markovian stochastic one. For that
purpose, let us consider a two-dimensional lattice of
periodically distributed disks of radius r , with a particle
bouncing elastically from them. Then the particle motion
is free between subsequent collisions and its velocity
u � �ux , uy� � const. This system, a periodic Lorentz
gas, is equivalent to the Sinai billiard with periodic bound-
ary conditions. We assume 2r , l, where l is the distance
between disk centers. The system is strongly chaotic
but the autocorrelation function of either component of
particle velocity falls off slowly, as 1�t for large t [6].
Therefore we can simulate solutions of Eq. (1) assuming
the velocity of particle inside the independently evolved
Sinai billiard as the stochastic force F�t� [19]. Its initial
value has been chosen on a circle with a uniform, time-
invariant, probability distribution. A quantity of interest is
the distribution of free paths: it falls like s23 [20], steeper
than for any KP. Its mean is convergent and the second
moment weakly divergent. For numerical simulations we
assume l � 1, r � 0.8, juj � 1, and F � 7.3

p
T ux .

Then CF � T�t for large t. We must stress, however,
that the form of FAF at small t also influences solutions
of (1). Thus the simulations utilizing the Sinai billiard
should be regarded as an approximation. The result of
the numerical calculation of the variance �y2�S�t� presents
Fig. 1. There are some discrepancies at small t, compar-
ing to the FS, that can be attributed to differences in FAF.
Asymptotically however, �y2�S stabilizes at the finite equi-
librium value and both results coincide, in contrast to the
KP case.

Finally, we wish to calculate the velocity autocorrelation
function (VAF) Cy�t� � �y�t0�y�t0 1 t��S , which usually
does not depend on t0. This quantity is responsible for
transport properties of the system. It allows us, namely,
to determine the diffusion coefficient D �

R
`
0 Cy�t� dt.

Typically, D is finite which corresponds to the normal
diffusion [21]. The FS for VAF in our case is [12]
Cy�t� � T�m�1 1

Rt
0 R�t� dt	 and it does not depend on

t0. We present this function in Fig. 2. It has the tail of the
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FIG. 2. The velocity autocorrelation function calculated using
the KP with t0 � 1.5 (dot-dashed line) and t0 � 3 (dashed line),
normalized to unity at t � 0. The result of the simulation with
the deterministic random force is marked by dots. The solid line
shows the FS. The parameters are the same as in Fig. 1.

power-law shape with numerically estimated exponent
equal to 21.18. On the other hand, we have calculated
VAF from simulations utilizing the KP [22]. The result
for two values of t0 is presented in Fig. 2. We have
normalized both functions to unity at t � 0. Their shape
is very different from the FS. The VAF initially falls
but then it stabilizes. Now it depends strongly on t0,
becoming more flat for larger t0. The case applying
the Sinai billiard, characterized by the finite, time-
independent variance, also produces a result different
from the FS 2 Cy�t�, is always non-negative, and does
not approach zero for increasing time. As regards the
transport properties of the system, the FS implies the
normal diffusion. Determination of the precise shape of
VAF at large t for the KP and the simulation utilizing the
deterministic random force, requires further studies. Any-
way, it is obvious that the tails of VAF are very flat. Then
the integration of VAF must produce a divergent result
and D becomes infinite, leading to the diffusion process
anomalously enhanced. This result agrees with those
obtained in the framework of a continuous-time random
walk approach [23] (Lévi walks) and a stochastic collision
model [24]. Both those approaches predict the enhanced
diffusion for power-law distributions of free paths; for
(5) the motion becomes ballistic: D diverges linearly
with time.
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