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We propose several schemes for implementing a fast two-qubit quantum gate for neutral atoms with
the gate operation time much faster than the time scales associated with the external motion of the atoms
in the trapping potential. In our example, the large interaction energy required to perform fast gate
operations is provided by the dipole-dipole interaction of atoms excited to low-lying Rydberg states in
constant electric fields. A detailed analysis of imperfections of the gate operation is given.

PACS numbers: 03.67.Lx, 32.80.Pj, 32.80.Rm
In recent years, numerous proposals to build quantum
information processors have been made [1]. Because
of their exceptional ability of quantum control and long
coherence times, quantum optical systems such as trapped
ions [2] and atoms [3], and cavity QED [4], have taken a
leading role in implementing quantum logic in the labora-
tory. Quantum computing with neutral atoms [5] seems
particularly attractive in view of very long coherence times
of the internal atomic states and well-developed techniques
for cooling and trapping atoms in optical lattices, far
off-resonance light traps, and magnetic microtraps [3].
Preparation and rotations of single qubits associated with
long-lived internal states can be performed by addressing
individual atoms with laser pulses. A central issue is to
design fast two-qubit gates.

First of all, it is difficult to identify a strong and con-
trollable two-body interaction for neutral atoms, which is
required to design a gate. Furthermore, the strength of
two-body interactions does not necessarily translate into
a useful fast quantum gate: large interactions are usually
associated with strong mechanical forces on the trapped
atoms. Thus, internal states of the trapped atoms (the
qubits) may become entangled with the motional degrees
of freedom during the gate, resulting effectively in an ad-
ditional source of decoherence. This leads to the typical
requirement that the process is adiabatic on the time scale
of the oscillation period of the trapped atoms in order to
avoid entanglement with motional states. As a result, ex-
tremely tight traps and low temperatures are required.

In the present Letter, we propose a fast phase gate
for neutral trapped atoms, corresponding to a truth table
je1� ≠ je2� ! eie1e2wje1� ≠ je2� for the logical states
jei� with ei � 0, 1, which (i) exploits the very large
interactions of permanent dipole moments of laser excited
Rydberg states in a constant electric field to entangle
atoms, while (ii) allowing gate operation times set by
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the time scale of the laser excitation or the two particle
interaction energy, which can be significantly shorter than
the trap period. Among the attractive features of the gate
are the insensitivity to the temperature of the atoms and to
the variations in atom-atom separation.

Rydberg states [6] of a hydrogen atom within a given
manifold of a fixed principal quantum number n are de-
generate. This degeneracy is removed by applying a con-
stant electric field E along the z axis (linear Stark effect).
For electric fields below the Ingris-Teller limit the mix-
ing of adjacent n manifolds can be neglected, and the en-
ergy levels are split according to DEnqm � 3nqea0E�2
with parabolic and magnetic quantum numbers q � n 2

1 2 jmj, n 2 3 2 jmj, . . . , 2�n 2 1 2 jmj� and m, re-
spectively, e the electron charge, and a0 the Bohr ra-
dius. These Stark states have permanent dipole moments
m � mzez � 3nqea0ez�2. In alkali atoms the s and p
states are shifted relative to the higher angular momentum
states due to their quantum defects, and the Stark maps
of the m � 0 and m � 1 manifolds are correspondingly
modified [6].

Consider two atoms 1 and 2 at fixed positions (see
Fig. 1a), and initially prepared in Stark eigenstates, with
a dipole moment along z and a given m, as selected by the
polarization of the laser exciting the Rydberg states from
the ground state. They interact and evolve according to the
dipole-dipole potential

Vdip�r� �
1

4pe0

"
m1 ? m2

jrj3
2 3

�m1 ? r� �m2 ? r�
jrj5

#
,

(1)

with r the distance between the atoms. We are interested
in the limit where the electric field is sufficiently large
so that the energy splitting between two adjacent Stark
states is much larger than the dipole-dipole interaction.
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For two atoms in the given initial Stark eigenstate, the
diagonal terms of Vdip provide an energy shift whereas
the nondiagonal terms couple �m, m� ! �m 6 1, m 7 1�
adjacent m manifolds with each other. We will assume
that these transitions are suppressed by an appropriate
choice of the initial Stark eigenstate [7]. As an illus-
tration we choose the hydrogen state jr� � jn, q � n 2

1, m � 0� and find for a fixed distance r � Rez of the two
atoms that u�R� � �rj ≠ �rjVdip�Rez� jr� ≠ jr� is equal
to u�R� � 29�n�n 2 1��2�a0�R�3�e2�8pe0a0� ~ n4. In
alkali atoms we have to replace n by the effective quan-
tum number n [6]. We will use this large energy shift to
entangle atoms.

The configuration we have in mind is as follows (see
Fig. 1). We consider two atoms, which for the moment
are assumed to be at fixed positions xj with j � 1, 2 la-
beling the atoms, at a distance R � jx1 2 x2j. We store
qubits in two internal atomic ground states (e.g., hyper-
fine levels) denoted by jg�j � j0�j and je�j � j1�j . The
ground states jg�j are coupled by a laser to a given Stark
eigenstate jr�j . The internal dynamics is described by a
model Hamiltonian

Hi�t, x1, x2� � ujr�1�rj ≠ jr�2�rj

1
X

j�1,2

∑
�dj�t� 2 ig� jr�j�rj

2
Vj�t, xj�

2
�jg�j�rj 1 H.c.�

∏
, (2)

with Vj�t, xj� Rabi frequencies, and dj�t� detunings of
the exciting lasers. g accounts for loss from the excited
states jr�j .

Including the atomic motion, the complete Hamiltonian
has the structure

H�t, x̂1, x̂2� � HT �x̂1, x̂2� 1 Hi�t, x̂1, x̂2� (3a)

� He�t, x̂1, x̂2� 1 Hi�t, x1, x2� , (3b)

FIG. 1. (a) Setup: A constant electric field along the z direc-
tion is applied to alkali atoms trapped in microtraps. (b) Level
scheme: Two ground states jg� and je� (qubits), and laser exci-
tation to the Rydberg state jg� ! jr�.
where HT describes the motion and trapping of the atoms,
and x̂j are the atomic position operators, and define r̂ �
x̂1 2 x̂2. Our goal is to design a phase gate for the inter-
nal states with a gate operation time Dt with the internal
Hamiltonian Hi�t, x1, x2� in Eq. (3b), where (the c num-
bers) xj now denote the centers of the initial atomic wave
functions as determined by the trap, while avoiding mo-
tional effects arising from He�t, x̂1, x̂2�. This requires that
the gate operation time Dt is short compared to the typi-
cal time of evolution of the external degrees of freedom,
HeDt ø 1. Under this condition, the initial density op-
erator of the two atoms evolves as re ≠ ri ! re ≠ r

0
i

during the gate operation. Thus the motion described by
re does not become entangled with the internal degrees of
freedom given by ri . Typically, the Hamiltonian HT will
be of the form

HT �
X

j�1,2

Ω∑
p̂2

j

2m
1 VT

j �x̂j�
∏

�jg�j�gj 1 je�j�ej�

1

∑
p̂2

j

2m
1 Vr

j �x̂j�
∏
jr�j�rj

æ
, (4)

which is the sum of the kinetic energies of the atoms and
the trapping potentials for the various internal states. In our
estimates for the effects of motion we will assume that the
potentials are harmonic with a frequency v for the ground
states, and v0 for the excited state.

Physically, for the splitting of the Hamiltonian accord-
ing to Eq. (3b) to be meaningful we require the initial
width of the atomic wave function a, as determined by
the trap, to be much smaller than the mean separation
between the atoms R. We expand the dipole-dipole in-
teraction around R, Vdip�r̂� � u�R� 2 F�r̂z 2 R� 1 . . . ,
with F � 3u�R��R. Here the first term gives the en-
ergy shift if both atoms are excited to state jr�, while
the second term contributes to He and describes the
mechanical force on the atoms due to Vdip . Other
contributions to He arise from the photon kick in the
absorption jg� ! jr�, but these terms can be suppressed
in a Doppler-free two photon absorption, for example. We
obtain He�x̂1, x̂2� � HT 2 F�r̂z 2 R� jr�1�rj ≠ jr�2�rj.

We will now study several models for phase gates ac-
cording to dynamics induced by Hi . A schematic overview
of the internal evolution of the two Rydberg atoms is
given in Fig. 2 (with shorthand notation jg�1 ≠ je�2 �
jge�, etc.).

Model A.—We assume Vj ¿ u, and in this scheme
individual addressing of the atoms is not necessary, i.e.,
V1 � V2 � V. We set d1 � d2 � 0. We perform the
gate with three steps: (i) apply a p pulse to the two
atoms, (ii) wait for a time Dt � w�u, and (iii) apply
again a p pulse to the two atoms. Since the Rabi
frequency V is much larger than the interaction energy,
the first pulse will transfer all the occupation from the
states jg�j to the states jr�j and the second laser pulse
will bring the population back to the ground states jg�j .
Between the two pulses the state jrr� will pick up the
2209



VOLUME 85, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 4 SEPTEMBER 2000
FIG. 2. Schematics of the ideal scheme. The internal state
jg�j is coupled to the excited state jr�j by the Rabi frequency
Vj�t� with the detuning dj�t�. The state je�j decouples from the
evolution of the rest of the system.

extra phase w � uDt. Thus, this scheme realizes a
phase gate operating on the time scale Dt ~ 1�u. We
note that the accumulated phase depends on the precise
value of u, i.e., is sensitive to the atomic distance. The
probability of loss due to g is approximately given
by pl � 2wg�u. Furthermore, during the gate opera-
tion (i.e., when the state jrr� is occupied) there are large
mechanical effects due to the force F. This motivates the
following model.

Model B.—We assume u ¿ Vj . Let us for the
moment assume that the two atoms can be addressed
individually [8], i.e., V1�t� fi V2�t�. We set dj � 0 and
perform the gate operation in three steps: (i) We apply a
p pulse to the first atom, (ii) a 2p pulse [in terms of the
unperturbed states, i.e., it has twice the pulse area of pulse
applied in (i)] to the second atom, and, finally, (iii) a p

pulse to the first atom. As can be seen from Fig. 2, the
state jee� is not affected by the laser pulses. If the system
is initially in one of the states jge� or jeg� the pulse
sequence (i)–(iii) will cause a sign change in the wave
function. If the system is initially in the state jgg� the
first pulse will bring the system to the state ijrg�, the
second pulse will be detuned from the state jrr� by
the interaction strength u, and thus accumulate a small
phase w̃ 	 pV2�2u ø p . The third pulse returns the
system to the state ei�p2w̃�jgg�, which realizes a phase
gate with w � p 2 w̃ 	 p (up to trivial single qubit
phases). The time needed to perform the gate operation
is of the order Dt 	 2p�V1 1 2p�V2. Loss from
the excited states jr�j is small provided gDt ø 1, i.e.,
Vj ¿ g. If we choose u � 1.8 GHz, Vj � 100 MHz,
and g � 100 kHz [9] we find a probability of loss from
the excited states of pl � 3.4%.

An adiabatic version of this gate has the advantage that
individual addressing of the two atoms is not required,
V1,2�t� � V�t� and d1,2�t� � d�t�. In this scheme we
assume the time variation of the laser pulses to be slow on
the time scale given by V and d (but still larger than the
trap oscillation frequency), so that the system adiabati-
cally follows the dressed states of the Hamiltonian Hi .
After adiabatically eliminating the state jrr�, we find the
energy of the dressed level adiabatically connected to the
2210
initial state jgg� to be given by egg�t� � sgn�d̃� �jd̃j 2

�d̃2 1 2V2�1�2��2 with d̃ � d 2 V2��4d 1 2u� the
detuning including a Stark shift. For the dressed levels
connected to jeg� and jge� we have eeg�t� � sgn�d� 3

�jdj 2 �d2 1 V2�1�2��2. The entanglement phase follows
as w�t� �

Rt
0 dt0 �egg�t0� 2 2eeg�t0��. For a specific

choice of pulse duration and shape V�t� and d�t� we
achieve w � w�Dt� � p (see Fig. 3a). In Fig. 3b the
phases accumulated in the dressed states of jgg� and
jeg� �jge��, and the resulting entanglement phase w

are shown. To satisfy the adiabatic condition, the gate
operation time Dt is approximately 1 order of magnitude
longer than in the gate discussed above.

A remarkable feature of model B is that, in the ideal
limit, the doubly excited state jrr� is never populated.
Hence, the mechanical effects due to atom-atom interac-
tion are greatly suppressed. Furthermore, this version of
the gate is only weakly sensitive to the exact distance be-
tween the atoms, since the distance-dependent part of the
entanglement phase w̃ ø p [10]. These features allow
one to design robust quantum gates with atoms in lattices
that are not filled regularly.

We now turn to a discussion of decoherence mecha-
nisms, which include spontaneous emission, transitions
induced by black body radiation, ionization of the
Rydberg states due to the trapping or exciting laser
fields, and motional excitation of the trapped atoms.
While dipole-dipole interaction increases with n4, the
spontaneous emission and ionization of the Rydberg states
by optical laser fields decreases proportional to n23. For
n , 20 the black body radiation is negligible in compari-
son with spontaneous emission, and similar conclusions
hold for typical ionization rates from the Rydberg states
for the numbers quoted in the context of Fig. 3.

We now calculate the motional effects described by He

on the fidelity of the gate. The dipole-dipole force, given
by F, causes a momentum kick to both atoms when they
populate jrr�. We assume the atoms to be initially in the
ground state of the trapping potential. For the adiabatic

FIG. 3. (a) The Rabi frequency V�t� normalized to V0 �
100 MHz (solid curve), d�t� normalized to d0 � 1.7 GHz
(dashed curve). We chose g � 100 kHz and u � 1.8 GHz.
(b) Accumulated phase of the state jgg� (dashed curve) and
jge� (dash-dotted curve). The resulting accumulated w�t� is
given by the solid curve and the probability of loss from the
excited state is found to be pl � 1.7%.
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gate (Model B), we estimate the probability pk of ex-
citing a trap state without changing the internal state of
the atoms in time dependent perturbation theory. We
find that the perturbative transition probability is bounded
by pk , �3hV

2
0Dt�8u�2�2 with h � a�R ø 1. For the

parameters given in Fig. 3, and h � 1�30 we find nu-
merically pk 	 2.5 3 1027 while the analytic approxi-
mation with a gate operation time Dt � 100�V0 yields
pk , 2.4 3 1023. The probabilities of exciting motional
quanta, and at the same time changing the internal state
of the atoms, require the perturbation to induce inter-
nal transitions with an energy difference of V or u in
addition to causing a motional excitation. Since u ¿
V ¿ v whenever there is population in the state jrr�,
these probabilities are much smaller than pk , and are thus
negligible. For the finite temperature of the trapped atoms,
we have to incoherently sum the probabilities of exciting
an atom due to the kick for the different trap states. We find
pn̄

k � �2n̄ 1 1�pk where n̄ is the mean excitation number
in the trap as determined by the finite temperature T .

The optical potential seen by the atom in the Rydberg
state jr� [see Eq. (4)] can be different from the trapping
potential in the ground states jg�, je�. This difference
causes the motional wave function to change its shape
while the atom is in jr�, and thus excites the atomic mo-
tion. We treat the deviation of the potential in the excited
state from the ground state trapping potential as a pertur-
bation and estimate the probability pt of exciting an atom
from the vibrational ground state during the gate opera-
tion. We find that the perturbation theory expression is
bounded by pt , jv2 2 v02jDt2�128. For the parame-
ters given in Fig. 3, and trap frequencies of v � 1 MHz
and v0 � 500 kHz, we find numerically pt 	 1025. The
analytical approximation (with Dt � 100�V0) gives pt ,

3.9 3 1023. At finite temperature T we find by incoher-
ent summation pn̄

t � �2n̄2 1 2n̄ 1 1�pt .
Alternatively, the optical trapping potential can be

turned off for the short time of the gate operation. The
shape of the wave function of the atoms evolves then
independently of their internal states je�, jg�, or jr�.
Therefore, no entanglement between external and internal
degrees of freedom is created during the gate operation.
However, the releasing and retrapping will cause heating
of the atoms. We estimate this effect at finite temperature
T and find an increase in the mean excitation number
of n̄ ! n̄ 1 Dn̄ � n̄ 1 �vDt�2�2n̄ 1 1��4 during a
gate operation.

The influence of imperfections on the other schemes
discussed in this Letter can be estimated in the same way as
for the adiabatic gate. However, in model A the momentum
kick will be stronger than for the other schemes because all
of the population is transferred to jrr� for a time w�u. The
force experienced by the atoms during this time is approxi-
mately given by F, yielding a total momentum transfer of
3w�R to the atoms, which for a separation R 
 l is of the
order of several recoils h̄k with k � 2p�l. Therefore,
only if the atoms are confined deep in the Lamb-Dicke
regime 2pa�l ø 1 with l the optical wave length, will
this momentum transfer not cause significant excitation.
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