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Theory of Two-Proton Radioactivity with Application to 19Mg and 48Ni
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We study the emission of two protons from nuclei where this is the only decay channel. A three-
body model is developed. We compare the “diproton” model with the three-body calculations. We
present exploratory studies of the 19Mg and 48Ni ground states, which are good candidates for two-
proton radioactivity. The two-proton width for the 17Ne 3�22 state is also estimated. Our calculations
give substantially lower values for the width than predicted by the diproton model, but larger than from
direct decay to the continuum.
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Emission of two protons from nuclear states has been
studied since 1960 when two-proton radioactivity was pre-
dicted by Goldansky for nuclei beyond the proton dripline
[1]. Two-proton decay may occur through three possi-
ble mechanisms: (i) sequential emission of protons via an
intermediate state, (ii) simultaneous emission of protons,
and (iii) “diproton emission,” i.e., emission of a 2He clus-
ter with very strong pp correlations. Experimentally only
the first two mechanisms have been identified. The third
case which is traditionally associated with the two-proton
radioactivity [1–3] is unobserved yet. In this paper we
consider two-proton emission in a more rigorous basis of
a realistic three-body model. This model is suitable for
treatment of a genuine three-particle nuclear decay mode
(called “true three-body decay” in [1]), where resonances
in the binary subsystems are located at higher energies than
in the three-body system. This situation is in a sense simi-
lar to the “borromean” property of bound halo nuclei (e.g.,
6He 01 and 11Li 3�22 [4], 17Ne 1�22 [5]). True three-
body decay modes are known for several states in light nu-
clei, e.g., 6Be 01 [6], 9Be 5�22 at 2.43 MeV [7], 12C 11

at 15.11 MeV [8,9]. Nowadays, the prime candidates for
the two-proton radioactivity are 19Mg and 48Ni [2], which
are likely to be bound to single-proton decay but unbound
to two-proton decay [10].

The traditional idea of diproton radioactivity is that,
due to the pairing effect, two protons form a quasiparti-
cle (diproton) under the Coulomb barrier and thus facili-
tate penetration. In more formal terms, we have a system
with two valence protons in the same shell and coupled to
Jp � 01. Conversion of the valence nucleons’ wave func-
tion (WF) from single-particle coordinates (Fig. 1a) to the
Jacobi “T” system (Fig. 1b) gives a large (for f7�2 nucle-
ons about 46%) component with Spp � 0, lx � ly � 0
(Spp is the total spin of two protons; lx and ly are an-
gular momenta conjugated to coordinates X and Y ). Dy-
namically this configuration is enhanced by pairing and
0031-9007�00�85(1)�22(4)$15.00
can be interpreted as a diproton in an s wave relative to
the core.

Diproton models ordinarily use the two-body R-matrix
expression for the width (e.g., [2]; in paper [3] a WKB
model is applied, but essentially in the same way):

G � 2g2Pl�0�E, 2Zcorerc� , (1)

where Pl�0�E, 2Zcore, rc� is the penetrability for 2He with
energy E. E is usually taken as a resonance energy above
the two-proton threshold, so zero energy is left for the rela-
tive motion of two protons (e.g., [2,3,10]). Equation (1)
then combines two incompatible things: penetration of a
pointlike particle along some trajectory under the Coulomb
barrier and zero energy of relative motion for the con-
stituents of this particle. This last feature implies infinite
size due to the uncertainty principle.

The original paper [1] is cautious about the diproton
model. What Goldansky really finds as a genuine signal
of two-proton emission is an “energy correlation between
the two protons, during the two-proton decay, which leads
to their energies being almost equal.” According to [1,11],
in the case of s-wave states, the diproton model and the
model for simultaneous emission of two protons (“direct
decay to continuum”) give similar widths. This latter can
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FIG. 1. Single-particle coordinate system (a), typical for a
shell model. In the Jacobi “T” system (b), “diproton” and core
are explicitly in configurations with definite angular momenta
lx and ly . For a heavy core the Jacobi “Y” system (c) is close
to the single-particle system (a).
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be estimated from its maximal value, achieved for equal
energies of protons:

G � 2g2�Pl�E�2, Zcore, rc��2. (2)

If l � 0 is taken, the estimate based on Eq. (2) differs from
that calculated by Eq. (1) by a factor close to unity. How-
ever, we are going to deal with nuclei where p-f shells are
occupied predominantly and an s wave is accessible only
via small components. The uncertainties connected with
the choice of l can be quite large, as was discussed in de-
tail in [11] and will be seen in Fig. 2.

In the model described here we use the hyperspherical
harmonic (HH) method [4]. In this method the absolute
values of Jacobi coordinates Xi and Yi for three particles
(Figs. 1b and 1c) are expressed via hyperangle ur and
hyperradius r. Index i � �T, Y� selects the Jacobi sys-
tem used: “T” or “Y.” In the “T” system ur and r are
given by

ur � arctan

∑r
�Acore12�

4Acore

XT

YT

∏
,

r2 �
1
2X2

T 1
2Acore

Acore12Y2
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The WF in this method is expanded over the HHs

C�X, Y � � r25�2
X
Kg

xKg�r�JKg�Vr� ,

where JKg�Vr� is the set of orthonormal basis functions
complete on the hypersphere Vr � �ur , VX , VY � of fixed
radius r. The hypermoment K is a generalized angu-
lar momentum (K � lx 1 ly 1 2n; n � 0, 1, . . .), while
multiindex g stand for the remaining quantum numbers:
g � �L, lx , ly , S, Spp�. In the HH basis the variational
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FIG. 2. Width as a function of resonance energy for 19Mg and
48Ni. Solid curves are calculated by Eq. (5). Stars, dashed, and
dash-dotted curves correspond to estimates Eq. (1) (diproton),
Eq. (2) (uncorrelated two protons) with l � 0, and l � lSM.
Channel radius is 3 fm for 19Mg and 4 fm for 48Ni; the reduced
width is approximated by the Wigner limit.
procedure reduces the Schrödinger equation to a set of
coupled ordinary differential equations.

It is clearly impractical to solve the scattering problem
to find the width of an extremely narrow state. We will
model the narrow decaying state as a solution of

�Ĥ 2 E 1 iG�2�C�1��r, Vr� � 0 , (3)

in a finite size domain with outgoing wave boundary con-
ditions. Equation (3) is solved approximately using the
idea that for a very narrow state the WF should be very
close to a “box” WF Cb in the internal region. The WF
Cb satisfies �Ĥ 2 Eb�Cb�r, Vr� � 0 for 0 , r , rb

and vanishes for r $ rb . In practice the value rb should
be as large as possible, but still in the “classically forbid-
den” region. The WF Cb is then used as a source term:

�Ĥ 2 Eb�C�1��r, Vr� � 2i�G�2�Cb�r, Vr� . (4)

This equation is solved subject to purely outgoing wave
boundary conditions with arbitrary G. The actual width is
then calculated from

G �
1
M

Im
R

dVr C�1�yr5�2�d�dr�r5�2C�1�jrmaxR
dVr

Rrmax
0 dr r5jC�1�j2

. (5)

This exact formula is obtained by applying Green’s theo-
rem to Eq. (3). Equation (5) has the simple physical mean-
ing of the ratio of the current through the hypersphere
of radius rmax to the number of particles inside it. The
method was first tested in the two-body case giving a good
agreement with conventional scattering calculations: the
deviation is between 8% and 0.1% for widths in the range
1021 10210 MeV, respectively.

The other approximations are connected with the three-
body Coulomb interaction. It gives coupling potentials for
the HH equations which decrease as r21, so the equa-
tions never decouple. One option is to switch off all the
Coulomb potentials at a large radius rmax ¿ rb , so that
solutions of Eq. (4) are matched to Coulomb functions

x
�1�
Kg �rmax� ~ GL �hKg , krmax� 1 iFL �hKg , krmax� ,

where L � K 1 3�2 and the Sommerfeld parameter

hKg � 0 . (6)

The other option is to switch off all the nondiagonal
Coulomb potentials beyond rmax. Then the hKg is

hKg � �rmax�y�VCoul
Kg,Kg�rmax� , (7)

where y � k�M, k �
p

2ME, M is nucleon mass, and
VCoul

Kg,Kg is the Coulomb part of the HH potential [4].
In the calculations we use the s-wave pp potential

V �R� � 231 exp�2�R�1.8�2�. For 6Be and 17Ne the
core-p potentials were taken from [4] and [5]. To di-
minish the ambiguity of calculations for 19Mg and 48Ni
we used potentials which act only in the states with
23
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angular momentum l � lSM of the dominant shell-model
configuration occupied by the valence protons. The depth
of this potential is controlled by the binding energy of
the system. Woods-Saxon form factors were used, with
diffuseness a � 0.65 fm and radius r0 � 1.2�Acore 1

1�1�3 from systematics. At least, such a potential guaran-
tees the population of the proper single particle states.

The results of calculations are shown in Table I and
Fig. 2. The experimental width G � 92�6� keV of the 6Be
g.s. is reproduced well. For all nuclei the widths calculated
by Eq. (5) agree well for both choices [Eqs. (6) and (7) of
boundary conditions, provided rmax is large enough (in cal-
culations it was taken in a range 70–250 fm). It therefore
appears that if the penetration through most of the bar-
rier is accounted for dynamically, the choice of asymptotic
state does not influence the width. In Fig. 2 we show the
estimated widths for diproton decay, Eq. (1), and uncor-
related two-proton decay, Eq. (2), with different l values.
The three-body calculations (see Fig. 2) lead to the widths
which are substantially larger than widths for direct decay
to the continuum from the dominant shell-model compo-
nents (lSM � 2 for 19Mg and lSM � 3 for 48Ni). At the
same time the three-body widths are much smaller than
the diproton widths, making it clear that although the three-
body results include the pp correlations, these correlations
are not strong enough to justify a pure diproton approach.

More realistic core-p potentials for 19Mg and 48Ni
(with LS forces from [12]) give results similar to those
in Table I. For example, for 48Ni at E � 1.12 MeV we
obtain GCoul � 4.0�0.5� 3 10223 MeV.

Blank et al. [10] use the diproton model and a limit
for the width to put a limit on the separation energy
Q2p , 1.5 MeV for 48Ni. The predictions of the three-
body model, applied in the same way, shift this limit to
Q2p , 2 MeV. The calculated two-proton width for the
17Ne 3.22 state is found to be very low compared to
the total width G � 1.3 3 1028 MeV [13] which is
presumably governed by electromagnetic transitions.

The WF densities jC�1�j2 on the XY plane in the “T”
system are shown in Figs. 3a and 3c. The densities show

TABLE I. Two proton decay widths. Values GPW and GCoul are
calculated using approximations of Eqs. (6) and (7), respectively.
Values in parentheses are estimates of the uncertainties of the
theoretical model.

State E, MeV GPW , MeV GCoul, MeV

6Be, 01 1.370 0.095�0.01� 0.09�0.01�
17Ne, 3�22 0.344 1.0�0.4� 3 10215 1.4�0.3� 3 10215

19Mg, 01 0.548 8.0�3.7� 3 10213 8.7�1.4� 3 10213

0.838 3.8�0.8� 3 10210 3.7�0.2� 3 10210

1.408 8.1�0.8� 3 1027 8.2�0.2� 3 1027

48Ni, 01 0.762 4.0�3.0� 3 10229 4.0�1.0� 3 10229

1.120 6.1�0.7� 3 10223 5.8�0.3� 3 10223

2.093 9.6�1.6� 3 10215 9.5�0.3� 3 10215

3.030 9.0�0.2� 3 10211 8.16�0.02� 3 10211
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three- and four-peak correlations typical for d- and
f-shell population. To demonstrate the barrier penetration
process, we also calculate the density of the hyperradial
current

J�X, Y � � Im
Z

dVX dVYC�1�yr5�2 d
Mdr

r5�2C�1�.
(8)

In the internal region the penetration flow patterns are very
complicated (Figs. 3b and 3d). At small distances they
follow the correlations typical for the internal region. Un-
der the barrier these correlations are washed out and the
“diproton path” close to the Y axis becomes important.
A smooth hyperangular distribution without nodes means
that the dominant component has K � 0, where both pro-
tons have l � 0 relative to the core and hence escape the
barrier more easily. Finally, the classically allowed region
is achieved, after which the protons fly more or less freely
(straight “tails” with constant value of J in Figs. 3b and
3d). For different energies this quasifree behavior happens
at hyperradii which are inversely proportional to the en-
ergy. The direction of the tail is practically independent of
energy, with mean velocity along the Y axis slightly larger
than mean velocity along X.

We can get additional insight into the importance of
pairing by simulating the uncorrelated two-proton case.
The interaction in the pp channel can be switched off and
core-p interaction is adjusted to give the same resonance
energy. Figure 3e shows the example of such “direct de-
cay to the continuum” for 48Ni. The correlations of the
nuclear interior survive to very large distances. The proba-
bility of decay is now very low, because in this case the
protons are in an f-wave relative to the core, inhibiting
the penetration. For example, for E � 1.12 MeV in 48Ni,
GCoul � 2.1 3 10226 MeV, which is close to the R ma-
trix estimate, G � 9.4 3 10226 MeV, with two f-wave
protons (Fig. 2). The pp interaction enhances the mixing
of configurations and gives the system the opportunity to
escape via lower angular momenta states. However, one
can see in Figs. 3b and 3d that the three- and four-peaked
internal correlations (Figs. 3a and 3c) disappear only at
distances Y of about 15–20 fm. Hence for most of the
path the two protons reside under a much higher barrier
than is assumed by the simple model with a diproton in an
s-wave state.

It should be noted that both with and without pairing,
the hyperangular spread of the decay “tail” is very narrow
in the “Y” coordinate system (Fig. 3f shows one plot as
they are all rather similar). This means that the protons’
energies relative to the core are close to each other irre-
spective of the correlation in the pp channel. This agrees
well with the prediction of Goldansky [1].

To conclude, a quantitative three-body model is devel-
oped to study the process of two-proton emission. The
results show that truncation of the Coulomb potential at
large distances does not lead to uncertainties in the energy
and width or in the WF in the “internal” domain.
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FIG. 3. 19Mg: WF density jC�1�j2 (a) and current density J�X, Y� (b) at E � 0.90 MeV in the “T” system. 48Ni: WF density (c)
and current density (d) at E � 1.12 MeV in the “T” system. (e) shows the same as (d), but without pairing. (f ) shows the same
as (d),(e), but in the “Y” system. The scale is three (a),(b) and two (c)–(f ) contours per order of magnitude. The dark regions in
(b),(d) at small r values stand for the negative current “backflow” invisible in the logarithmic plot.
However, other interesting observables (e.g., momentum
distributions) need further investigation. The results of
the calculations predict much lower widths for two-proton
emission than the widely used diproton model, where the
emission of two protons with zero relative energy is as-
sumed. For a given decay width, this increases any fitted
decay energy: for 48Ni this shifts the limit from Q2p ,

1.5 MeV [10] to Q2p , 2 MeV. The calculated two-
proton width for the 17Ne 3�22 state is negligible com-
pared to the electromagnetic decay width. The pp pairing
was found to be very important for penetration, but the
penetration pattern is complicated and involves various
paths which cannot be accounted for properly in a dipro-
ton model. The correlations which exist in the interior of
the nucleus are drastically smoothed by the proton pairing
and Coulomb interactions before the asymptotic region is
reached.
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