
VOLUME 85, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 4 SEPTEMBER 2000

2192
Phenomenological Model of Dynamic Nonlinear Response of Relaxor Ferroelectrics
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A phenomenological model was proposed which describes frequency dispersion of nonlinear dielectric
response of relaxor ferroelectrics (relaxors) as a result of dispersion of their linear dielectric permittivity.
The model was applied to Pb�Mg1�3Nb2�3�O3 (PMN) relaxor. It provided a good qualitative description
of temperature and frequency dependence of the third harmonics of PMN. Analysis within the model
yielded a frequency independent nonlinear coefficient corresponding to static nonlinear dielectric suscep-
tibility. The model explained the recently reported for PMN data on the Vogel-Fulcher law for frequency
dependence of the temperature at which the third harmonics passes a maximum.

PACS numbers: 77.84.Dy, 77.22.Gm, 77.80.–e
Recently, there has been a strong interest in studying
nonlinear dielectric properties of relaxor ferroelectrics (re-
laxors), since it has been recognized that nonlinear dielec-
tric data could be used to discriminate between existing
models of relaxors, and thus lead to the development of
the understanding of these materials.

At present, there remain only two concepts which
are consistent with the key features of relaxors, such as
(i) frequency dispersion within giga- to millihertz range
[1,2] with a freezing of the relaxation time spectrum [2,3],
(ii) nonergodic behavior at low temperatures [4,5] as a
result of the freezing, and (iii) phase transition into a long-
range ferroelectric phase induced by a dc electric field
around the freezing temperature Tf [4,6]. One concept
describes relaxors as analogs of dipolar glasses where
random fields and random interactions between polar
regions lead to the freezing transition into the glassy state
[2,4,7–9]. The second concept describes the freezing
as a phase transition to ferroelectric state broken into
nanodomains due to quenched random fields [5,10,11].

The current discussion suggests that the controversy
between the dipolar glass and nanodomain concepts of
relaxors can be solved by measuring the temperature de-
pendence of the ratio xnl�´4

s in the vicinity of Tf , which
should contain information about the type of freezing [12].
´s and xnl are the static linear permittivity and static
nonlinear susceptibility, respectively, defined from P �
´0�´sE 2 xnlE3 1 · · ·�, where P is the polarization, E
is the electric field, and ´0 � 8.854 3 10212 F�m. It is
recommended to determine xnl from the third harmonic
component of the polarization measured in the limit of the
very small ac field, instead of using the dc nonlinear ef-
fect [13], in order to avoid a possibility of inducing the
phase transition into a long-range ferroelectric phase near
Tf [4,6,12]. So far, it has been impossible to obtain con-
clusive information on the behavior of xnl�´4

s vs T for any
of the relaxors. The reason is that in relaxors the frequency
dispersion of both linear permittivity and third harmonics
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starts far above Tf [2,14], and thus hinders determination
of ´s and xnl around the freezing temperature.

Since dielectric properties of relaxors exhibit strong fre-
quency dispersion, it is highly desirable to have a dynamic
theory of nonlinear response, which would allow one to
either model the dynamic response and compare it with
experimental data, or to analyze the data and obtain the
temperature dependence of xnl�´4

s . To our knowledge,
no dynamic theory of nonlinear response is available ei-
ther for the dipolar glass [2,4,7–9] or for the nanodomain
[5,10,11] concept of relaxors. Recently, a spherical ran-
dom bond-random field (SRBRF) model [9,13] was de-
veloped for the static case of the dipolar glass concept.
It predicted that xnl�´4

s should have a maximum at Tf ,
instead of diverging behavior observed in classical dipo-
lar glasses [15,16], due to the presence of random fields.
However, because of the difficulties related with obtain-
ing xnl�´4

s near Tf , this static case could not be validated
experimentally.

To fill the existing gap between theory and experiment,
in this work we develop a phenomenological model of a
dynamic nonlinear response of relaxors. It aims at de-
scribing the frequency dependence of the third harmonics
of the polarization, in order to expand the temperature in-
terval, necessary to study freezing phenomena in relaxors
[2], toward freezing temperature Tf . The model employs a
series expansion of the free energy of the material in terms
of macroscopic polarization: G1 � aP2 1 bP4 1 · · · ,
where a and b are temperature dependent coefficients.
This expansion describes macroscopically centrosymmet-
rical cubic material, which is the case of most of the relax-
ors, including the “classical” example Pb�Mg1�3Nb2�3�O3
(PMN) [1,6]. The expansion (and the following formu-
las) is written in the scalar form, which corresponds to the
case of either a single crystal where field and polariza-
tion are directed along the �100� crystal axis, or ceram-
ics with a random orientation of the grains. The term
bP4 in this expansion controls the nonlinear dielectric
© 2000 The American Physical Society
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properties of the material, and higher order nonlinear terms
are omitted. This assumption may be the case of ex-
periment where the amplitudes of polarization harmonics,
Pk , satisfy inequality: P1 ¿ P3 ¿ P5 · · · , which was ob-
served in PMN [14,17].

For the system where the dynamic response is controlled
by a single relaxation time, such as “normal” ferroelectrics,
the equation of motion corresponding to the above expan-
sion can be written as [18] E � aP 1 bP3 1 hdP�dt,
or in the following form:

t
dP
dt

1 P � ´0´s�E 2 bP3� , (1)

where relaxation time, t � ha21, and static linear per-
mittivity, ´s � ´0a21, were introduced. From Eq. (1), the
nonlinear component of the polarization can be found by
using response function, fP�t� � e2t�t�t, and iterating
the following integral equation:

P�t� � ´0´s

Z t

2`
fP�t 2 t0� �E�t0� 2 bP3�t0�� dt0, (2)

which directly follows from Eq. (1). This method can
also be applied to relaxors, if one takes into account their
broad spectrum of relaxation times [2,3]. The solution
of Eq. (1) can be generalized in the case of the spectrum
by using the response function in the form [19]: fP�t� �R1`

2` G�lnt� �e2t�t�t� d�lnt�, where the spectrum G�lnt�
has a normalizing condition:

R
1`
2` G�lnt� d�lnt� � 1.

With a generalized response function, the nonlinear com-
ponent of the polarization can still be found by iterating
Eq. (2).

If an ac field, E�t� � Em sinvt, is applied to the
cubic material, the induced polarization is given as a
sum of odd frequency harmonics. Since in the model
being considered the nonlinear properties are given by
the term bP3 in Eq. (1), we limit ourselves to the first
and third harmonics: P�t� � P0

1 sinvt 1 P00
1 cosvt 1

P0
3 sin3vt 1 P00

3 cos3vt, where the amplitudes of their
real, P0

1, P0
3, and imaginary, P00

1 , P00
3 , parts satisfy inequal-

ity P0
3, P00

3 ø P0
1, P00

1 . The first iteration of Eq. (2) gives
well-known expressions for the real and imaginary parts
of linear permittivity [19]:

´0
l�v� � ´s

Z 1`

2`
G�lnt�

¡
�1 1 �vt�2� d�lnt�

and ´
00
l �v� � ´s

R
1`
2`�G�lnt� �vt����1 1 �vt�2� d�lnt�,

which are defined from the amplitudes of the first harmon-
ics as P0

1 � ´
0
l´0Em and P00

1 � 2´
00
l ´0Em, respectively.

The second iteration yields the amplitudes of the third
harmonics as [17]

P0
3 �

b

4
�´03

l �v�´0
l�3v��´4

0E3
m , (3)

P00
3 �

b

4
�´00

l �3v�´03
l �v� 1 3´00

l �v�´0
l�3v�´02

l �v��´4
0E3

m .

(4)
Note that in these equations, b, the permittivity, and the
third harmonics also depend upon temperature T ; however,
this argument is omitted to make the reading of the formu-
las easier.

To verify the model, our experiments included measure-
ments of ´

0
l , ´

00
l , P0

3, and P00
3 of the PMN single crystal as

a function of temperature and frequency [17]. An ac field
was applied along the �100� axis and had an amplitude of
Em � 40 V�cm, which is considered to be small enough
to probe “true” nonlinear properties of relaxors [2]. The
permittivity was measured within the frequency interval
20 Hz to 1 MHz using a HP 4284A LCR meter, and the
third harmonics was measured within the interval 1 Hz to
10 kHz using a SR 830 lock-in amplifier. All the experi-
ments were performed upon cooling from 380 to 180 K
with a rate of 0.5 K�min.

The temperature and frequency dependence of the third
harmonics measured in the experiment are plotted in
Figs. 1(a) and 1(b). Imaginary part, P00

3 , and the absolute
value of the real part, jP0

3j, exhibit similar behavior: They
have a maximum as a function of temperature, which shifts
to higher temperatures and becomes smaller in magnitude
with increasing frequency. At high temperatures, P00

3 and
the frequency dispersion of jP0

sj disappear simultaneously:
above T � 270 K, P0

3 coincides for different frequencies
within the experimental uncertainty and P00

3 � 0.
Figures 1(c) and 1(d) show P0

3 and P00
3 calculated

within the proposed model using Eqs. (3) and (4). The
curves were calculated from the data on linear permittivity
using P0

3 ~ ´
03
l �v�´0

l�3v� and P00
3 ~ �´00

l �3v�´03
l �v� 1

3´
00
l �v�´0

l�3v�´02
l �v��, which differ from Eqs. (3) and (4)

only by a factor of b´
4
0E3

m�4. As one can see, the model
reproduces qualitatively the experimentally measured
dispersion of the third harmonics, shown in Figs. 1(a) and
1(b). The only disagreement is a nonmonotonical behav-
ior of P00

3 �T � measured around 270 K at 1 Hz, Fig. 1(b).
This deviation represents the contribution from higher
polarization harmonics. When the ac field amplitude was
increased, it developed into a well-defined minimum in
P00

3 �T �, which exhibited a regular frequency dependence,
as shown in Fig. 2.

If the model is correct, the nonlinear coefficient b

should be frequency independent. Figure 3 demonstrates
b calculated from P0

3 using Eq. (3) and the data from
Figs. 1(a) and 1(c). To the most part b appears to be
frequency independent: above 280 K (obviously, here the
response is quasistatic), and below 250 K, where the val-
ues of b corresponding to different frequencies coincided
to within the experimental uncertainty. b�T � shows some
frequency dependence only in the temperature interval
260–280 K. Two possible reasons can be indicated:
either this is a true dispersion of b itself, or the dispersion
comes from higher order harmonics. We gravitate towards
the latter option, because in this temperature interval,
260–280 K, the third harmonics of PMN exhibited
deviation from the dependence expected from Eq. (3):
P0

3 ~ E3
m, even at small values of the ac field [14,17].
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FIG. 1. (a) and (b) Temperature and frequency dependence of the real, P0
3, and imaginary P00

3 , parts of the third polarization
harmonics of PMN single crystal, measured using ac field amplitude of 40 V�cm. (c) and (d) P0

3 and P00
3 calculated within the

proposed phenomenological model using the data for linear dielectric permittivity measured at the same ac field amplitude, as
P0

3 ~ ´
0 3
l �v�´0

l�3v� and P00
3 ~ �´00

l �3v�´0 3
l �v� 1 3´

00
l �v�´0

l�3v�´0 2
l �v��.
Nevertheless, the results presented above lead to the
following conclusions: (i) there is a good qualitative
agreement of calculations, Figs. 1(c) and 1(d), with the
experiment, Figs. 1(a) and 1(b), (ii) the nonlinear co-
efficient b is frequency independent in the temperature
interval where both linear permittivity and third polar-
ization harmonics exhibit frequency dispersion, and, in
particular, (iii) upon cooling from 260 to 200 K, b shows
the same steep increase by 2 orders of magnitude for all
the frequencies. Taken together, (i)–(iii) let us conclude
that the proposed phenomenological model provides
a good description of the dynamics of the nonlinear
response of PMN.

FIG. 2. Temperature and frequency dependence of the imagi-
nary part, P00

3 , of the third harmonics of PMN measured at higher
ac field amplitude, 100 V�cm. The nonmonotonic deviation in
P00

3 �T� seen in Fig. 1(b) for 1 Hz is now developed into a well-
defined minimum, which shows a regular change with frequency.
Thus, this corresponds to the contribution from higher polariza-
tion harmonics.
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The fact that b, derived from the dynamic experiment,
does not show a frequency dependence, even around the
freezing temperature, Tf � 220 K [2,3], may imply that
b corresponds to the true static nonlinear susceptibility of
PMN [20]: b ~ xnl�´4

s . Thus, one can compare b�T �
from Fig. 3 with the microscopic SRBRF model [9,13].
To the larger part, b�T � seems to be consistent with model
calculations [9,13]. It exhibits a minimum around 270 K in
Fig. 3, which was also observed in Ref. [21], and a strong

FIG. 3. Temperature dependence of nonlinear coefficient
b at different frequencies of the ac field calculated within
the phenomenological model from the data on the third har-
monics, P0

3, and linear permittivity, ´
0
l . The inset shows the

relationship between the logarithm of measurement frequency
and temperature of the maximum, Tmax, corresponding to
the measured P0

3�v, T � (boxes) from Ref. [2] and the model,
´
0 3
l �v, T �´0

l�3v, T �, (closed circles) from Fig. 1(c). The solid
line corresponds to the fit of v�Tmax� for ´

0
l�v, T � to the Vogel-

Fulcher law within eleven decades of frequency, from Ref. [3].
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increase over 2 orders of magnitude at lower temperatures.
We find only one discrepancy with the SRBRF model. In
Fig. 3, b�T � continues to increase monotonically even be-
low the freezing temperature, Tf � 220 K, whereas the
SRBRF model predicts a maximum of b�T � at Tf . This
discrepancy may require additional verification. No con-
clusion can be made now regarding the nanodomain con-
cept of relaxors [5,10,11], because no microscopic theory
is available here, even in the static case.

The essential feature of the present phenomenological
model is that here the dispersion of the nonlinear re-
sponse originates from the dispersion of linear permittiv-
ity, Eqs. (3) and (4). This may explain the recent data [2]
for the frequency dependence of the temperature of the
maximum, Tmax, of the third harmonics, P0

3�v, T �. It was
shown that v�Tmax� obeyed the Vogel-Fulcher (VF) law:
v � v0 exp�2Ua�kB�Tmax 2 Tf��, and the fit yielded the
value of freezing temperature Tf very close to that deter-
mined from the similar analysis of the linear permittivity
[2]. The inset of Fig. 3 compares the frequency depen-
dence of Tmax derived from the results of calculations
within the present model, ´

03
l �v, T �´0

l�3v, T �, and from
the measured third harmonics, P0

3�v, T �. One can see that
v�Tmax� for the model (closed circles) and measurements
(open circles) agree well with each other. In fact, this result
correlates with the data showing that nonlinear coefficient,
b�T �, is frequency independent, Fig. 3, and therefore, the
frequency dependence of the third harmonics is due to that
of linear permittivity. We did not try to fit v�Tmax� for
P0

3�v, T � and the model, because the small number of data
points available would not produce a reliable fit. Instead, to
check if the third harmonics may follow the VF law, in the
same plot we compare its data with the curve v�Tmax� for
the linear permittivity, which is known to obey the VF law
within eleven decades of frequency [3]. The close agree-
ment between data points for the third harmonics (both
model and measured) with the solid line corresponding
to ´

0
l�v, T � let us conclude that most likely v�Tmax� for

P0
3�v, T � will also follow the VF law, and the values of

the parameters will be close to those corresponding to the
VF law for ´

0
l�v, T �, as was observed in Ref. [2].

In conclusion, the phenomenological model was de-
veloped which describes frequency dispersion of the
third polarization harmonics in relaxors as a result of the
dispersion of their linear response. The model was sup-
ported by the following results: (i) good qualitative de-
scription of the temperature and frequency dependence
of the third harmonics of PMN relaxor; (ii) the nonlin-
ear coefficient b ~ xnl�´4

s derived from the analysis
of experimental data within the model was frequency
independent; and (iii) the model explained the VF law
for the frequency dependence of the temperature of the
maximum of the third harmonics reported recently [2].
The model deals with the frequency dependence of non-
linear response and, therefore, expands the temperature
interval necessary to study the freezing phenomena in
relaxors toward freezing temperature. To make use of this
advantage, b�T � derived from our experimental data
was compared with microscopic SRBRF model near Tf

[9,13]. To the larger part, b�T � agreed with the SRBRF
model, but it did not exhibit the maximum at the freezing
temperature which is predicted by the model.
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