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Quantum Theory of the Smectic Metal State in Stripe Phases
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We present a theory of the electron smectic fixed point of the stripe phases of doped layered Mott
insulators. We show that in the presence of a spin gap three phases generally arise: (a) a smectic
superconductor, (b) an insulating stripe crystal, and (c) a smectic metal. The latter phase is a stable
two-dimensional anisotropic non-Fermi liquid. In the absence of a spin gap there is also a more conven-
tional Fermi-liquid-like phase. The smectic superconductor and smectic metal phases (or glassy versions
thereof) may have already been seen in Nd-doped La22xSrxCuO4.

PACS numbers: 71.10.Hf, 71.27.+a, 74.20.Mn
In the past few years very strong experimental evidence
has been found for static or dynamic charge inhomogene-
ity in several strongly correlated electronic systems, in
particular, in high-temperature superconductors [1], man-
ganites [2], and quantum Hall systems [3]. In d dimen-
sions, the charge degrees of freedom of a doped Mott
insulator are confined to an array of self-organized (d 2

1)-dimensional structures. In d � 2 these structures are
linear and are known as stripes. Stripe phases may be insu-
lating or conducting. We have recently proposed that quite
generally the quantum mechanical ground states, and the
thermodynamic phases which emerge from them, can, on
the basis of broken symmetries, be characterized as elec-
tronic liquid crystal states [4]. Specifically, a conducting
stripe ordered phase is an electronic smectic state [5], while
a state with only orientational stripe order (such as is pre-
sumably observed in quantum Hall systems [3]) is an elec-
tronic nematic state [5,6].

Here, we use a perturbative renormalization group
analysis, which is asymptotically exact in the limit of
weak interstripe coupling, to reexamine the stability of the
electronic phases of a stripe ordered system in d � 2 and
T ! 0. The results are summarized in Figs. 1 and 2. In
addition to an insulating stripe crystal phase, a variant of
a Wigner crystal, we prove that there exist stable smectic
phases: (1) an anisotropic smectic metal (non-Fermi-
liquid) state, which is a new phase of matter; (2) a stripe
ordered smectic superconductor. We consider the cases of
both spin-gap and spin-1�2 electrons.

One-dimensional correlated electron systems are Lut-
tinger liquids, [7] which are quintessential scale-invariant
non-Fermi liquids with correlation functions exhibiting
power-law behavior, typically with anomalous exponents.
Interest in arrays of Luttinger liquids has recently been
restimulated following a proposal by Anderson [8] that the
fermionic excitations of a Luttinger liquid are confined [7]
and consequently that interchain transport is incoherent.
However perturbative studies of the effects of interchain
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couplings at the decoupled Luttinger liquid fixed point
have invariably concluded that such systems always order
at low temperatures, or cross over to a higher-dimensional
Fermi-liquid state, i.e., that the Luttinger behavior is
restricted to a high-energy crossover regime [7,9]. In
the important case in which the interactions within a
chain are repulsive, the most divergent susceptibility
within a single chain, especially when there is a spin
gap, is associated with 2kF or 4kF charge-density wave
(CDW) fluctuations, i.e., the decoupled Luttinger fixed
point is typically unstable to two-dimensional crystal-
lization [4,5,7]. There is however a loophole in this
argument. The decoupled Luttinger fixed point is not
the most general scale-invariant theory compatible with
the symmetries of an electron smectic. In particular, the
long wavelength density-density and/or current-current
interactions between neighboring Luttinger liquids are
marginal operators, and should be included in the fixed
point Hamiltonian [Eq. (2)], which we call the generalized
smectic non-Fermi-liquid fixed point. Our principal
results follow from a straightforward analysis of the
perturbative stability of this fixed point. To the best of our
knowledge, the model presented here is the first explicit
example of a system with stable non-Fermi-liquid behav-
ior (albeit very anisotropic) in more than one dimension
and which exhibits “confinement of coherence” [10].
Sliding phases, which are classical analogs of the smectic
metal state [4] in 3D stacks of coupled 2D planes with XY,
crystalline, or smectic order, have, however, been investi-
gated [11,12].

The low-energy Luttinger liquid behavior of an isolated
system of spinless interacting fermions is described by
the fixed point Hamiltonian of a bosonic phase field [7],
f�x,t�, whose dynamics is governed by the Lagrangian
density (in imaginary time t)

L �
w
2

∑
1
y

µ
≠f

≠t

∂2
1 y

µ
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≠x

∂2∏
, (1)
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where w (the inverse of the conventional Luttinger param-
eter K) and the velocity of the excitations y are nonuni-
versal functions of the coupling constants and depend on
microscopic details. For repulsive interactions we expect
w $ 1 and, for weak interactions w and y are determined
by the backward and forward scattering amplitudes g2 and
g4 [7]. Physical observables, such as the long wavelength
components of the charge-density fluctuations j0 and the
charge current j1, are given by the bosonization formula
jm �

1
p

p
emn≠nf where emn is the Levi-Civita tensor. If

both spin and charge are dynamical degrees of freedom,
there are two Luttinger parameters (Kc, Ks), and two ve-
locities (yc,ys).

The one-dimensional correlated electron fluids in the
stripe phases of high-temperature superconductors are cou-
pled to an active environment, and so are expected to have
gapped spin excitations [13]. As such they are best de-
scribed as Luttinger liquids in the Luther-Emery regime
[14] whose low-energy physics is described by a single
Luttinger liquid for charge. The same is true of the stripe
states of the spin-polarized two-dimensional electron gas
(2DEG) in magnetic fields [5].

Now consider a system with N stripes, each labeled by
an integer a � 1, . . . ,N . We will consider first the phase
in which there is a spin gap. Here, the spin fluctuations
are effectively frozen out at low energies. Nevertheless
each stripe a has 2 degrees of freedom [4]: a transverse
displacement field which describes the local dynamics of
the configuration of each stripe, and the phase field fa for
the charge fluctuations on each stripe. The action of the
generalized Luttinger liquid which describes the smectic
charged fluid of the stripe state is obtained by integrating
out the displacement fields. These fluctuations give rise
to a finite renormalization of the Luttinger parameter and
velocity of each stripe. More importantly, the shape fluc-
tuations, combined with the long wavelength interstripe
Coulomb interactions, induce interstripe density-density
and current-current interactions, leading to an imaginary
time Lagrangian density of the form

Lsmectic �
1
2

X
a,a0,m

ja
m�x�W̃m�a 2 a0�ja0

m �x� . (2)

These operators are marginal, i.e., have scaling dimension
2, and preserve the smectic symmetry fa ! fa 1 aa

(where aa is constant on each stripe) of the decoupled Lut-
tinger fluids. Whenever this symmetry is exact, the charge-
density wave order parameters of the individual stripes do
not lock with each other, and the charge-density profiles
on each stripe can slide relative to each other without an
energy cost. In other words, there is no rigidity to shear
deformations of the charge configuration on nearby stripes.
This is the smectic metal phase [4].

The fixed point action for a generic smectic metal phase
thus has the form (in Fourier space)
S �
X
Q

1
2

�W0�Q�v2 1 W1�Q�k2� jf�Q�j2

�
X
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1
2
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æ
ju�Q�j2,

(3)

where Q � �v, k, k��, and u is the field dual to f.
Here k is the momentum along the stripe and k�

perpendicular to the stripes. The kernels W0�Q� and
W1�Q� are analytic functions of Q whose form de-
pends on microscopic details, e.g., at weak coupling
they are functions of the interstripe Fourier transforms
of the forward and backward scattering amplitudes
g2�k�� and g4�k��, respectively. Thus, the smectic fixed
point is characterized by effective (inverse) Luttinger
and velocity functions, w�k�� �

p
W0�k��W1�k�� and

y�k�� �
p

W1�k���W0�k��, and, like a 1D Luttinger
liquid, by power-law decay of correlations functions [9].

In the presence of a spin gap, single electron tunnel-
ing is irrelevant [13], and the only potentially relevant
interactions involving pairs of stripes a,a0 are singlet
pair (Josephson) tunneling, and the coupling between the
CDW order parameters. These interactions have the form
Hint �

P
n

�H n
SC 1 H

n
CDW � for a0 2 a � n, where

H n
SC �

µ
L

2p

∂2 X
a
Jn cos�

p
2p �ua 2 ua1n�� ,

H n
CDW �

µ
L

2p

∂2 X
a
Vn cos�

p
2p �fa 2 fa1n�� .

(4)

Here Jn are the interstripe Josephson couplings (SC), Vn

are the 2kF components of the interstripe density-density
(CDW) interactions, and L is an ultraviolet cutoff, L �
1�a where a is a lattice constant. A straightforward cal-
culation yields the scaling dimensions D1,n 	 DSC,n and
D21,n 	 DCDW,n of H n

SC and H
n
CDW :

D61,n �
Z p

2p

dk�

2p
�k�k���61�1 2 cosnk�� , (5)

where k�k�� 	 w�0, 0, k��. Since k�k�� is a periodic
function of k� with period 2p , k�k�� has a convergent
Fourier expansion of the form k�k�� �

P
n kn cosnk�.

We will parametrize the fixed point theory by the coeffi-
cients kn, which are smooth nonuniversal functions. In
what follows we shall discuss the behavior of the sim-
plified model with k�k�� � k0 1 k1 cosk�. Here, k0
can be thought of as the intrastripe inverse Luttinger pa-
rameter, and k1 is a measure of the nearest neighbor
interstripe coupling. For stability we require k0 . k1.
Since it is unphysical to consider longer range interac-
tions in Hint than are present in the fixed point Ham-
iltonian, we treat only perturbations with n � 1, whose
dimensions are DSC,1 	 DSC � k0 2

k1

2 , and DCDW,1 	

DCDW � 2��k0 2 k1 1

q
k
2
0 2 k

2
1�. For a more general

function k�k��, operators with larger n must also be con-
sidered, but the results are qualitatively unchanged [12,15].

In Fig. 1 we present the phase diagram of this
model. The dark AB curve is the set of points where
2161



VOLUME 85, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 4 SEPTEMBER 2000
DCDW � DSC, and it is a line of first order transitions.
To the right of this line the interstripe CDW coupling is
the most relevant perturbation, indicating an instability
of the system to the formation of a 2D stripe crystal [4].
To the left, Josephson tunneling (which still preserves
the smectic symmetry) is the most relevant, so this
phase is a 2D smectic superconductor. (Here we have
neglected the possibility of coexistence since a first order
transition seems more likely.) Note that there is a region
of k0 $ 1, and large enough k1, where the global order
is superconducting although, in the absence of interstripe
interactions (which roughly corresponds to k1 � 0), the
superconducting fluctuations are subdominant. There
is also a (strong coupling) regime above the curve CB
where both Josephson tunneling and the CDW coupling
are irrelevant at low energies. Thus, in this regime the
smectic metal state is stable. This phase is a 2D smectic
non-Fermi liquid in which there is coherent transport only
along the stripes.

The phase transitions from the smectic metal to the 2D
smectic superconductor and the stripe crystal are continu-
ous. The three phase boundaries meet at the bicritical point
B, where k0 
 4 and k1 
 0.97k0. While the details of
the phase diagram are nonuniversal, the basic properties
of this model are quite general: the interstripe long wave-
length density-density coupling rapidly increases the scal-
ing dimension of the interstripe CDW coupling while the
scaling dimension of the interstripe Josphson coupling is
less strongly affected. Although for this model the smectic
metal has a small region of stability, we expect it to grow
for longer range interactions.

The transport properties of isolated Luttinger liquids
have been studied extensively [16], and many of these
results can be applied in this context. At temperatures
well above any ordering transition, we can use pertur-
bation theory about the smectic fixed point in powers of
the scaling variables X 	 �J �y� �Ly�T �22DSC and Y 	
�V �y� �Ly�T �22DCDW , and for weak disorder we can simi-
larly employ perturbation theory in powers of the backscat-
tering interaction, Vback. (Electron-phonon coupling
produces results similar to those of disorder, although
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FIG. 1. Phase diagram for a system with a spin gap.
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with a temperature dependent effective Vback.) However,
because sxx and sxy are highly singular in the limit
Vback ! 0 (when the system is Galilean invariant along
the stripes), we must resume the naive perturbation
expansion of the Kubo formula to obtain perturbative ex-
pressions for the component of the resistivity tensor along
a stripe rxx , the Hall resistance rxy , and the conductivity
transverse to the stripe, syy .

As is well known [16], rxx � 0 for Vback � 0, and
develops a calculable power-law temperature dependence
which, to leading order in Vback, is

rxx �
h̄

e2nsy

jVbackj
2

T2

µ
T

yL

∂D̄CDW

fxx�X2,Y2� 1 · · · ,

(6)

where fxx�X,Y � is a scaling function and fxx�0, 0� � 1.
Here, ns is the density of stripes, and D̄CDW 	 DCDW,` is
the dimension of the CDW order parameter.

Whether the interstripe Josephson coupling, J , is irrele-
vant or relevant, so long as the temperature is not too
low, the component of the conductivity tensor transverse
to the stripe direction can be obtained from a perturbative
evaluation of the Kubo formula to lowest order in powers
of the leading coupling J . Combining this result with a
simple scaling analysis we find (to zeroth order in Vback)

syy �
e2

h
nsb

2L

µ
J

y

∂2µ T
Ly

∂2DSC23

fyy�X2,Y2� , (7)

where b is the spacing between stripes, fyy is a scaling
function, and fyy�0, 0� � 1. An interesting aspect of this
expression is that, in the perturbative (high-temperature)
regime, the temperature derivative of syy changes from
positive to negative at a critical value of DSC � 3�2,
whereas the actual superconductor to (CDW) insulator
transition occurs somewhere in the range 1 , DSC , 2,
depending on the value of k0�k1.

For a system with Galilean invariance along the stripes
sxy � neffec�B, and, to leading order in Vback,

rxy � B�neffec 1 · · · . (8)
The physics governing neff is rather subtle—neglecting
irrelevant couplings, the fixed point Hamiltonian is ac-
tually particle-hole symmetric, which implies rxy � 0.
Thus neff is determined by the leading irrelevant cou-
plings which break particle-hole symmetry, terms of the
form �≠xf�3 and �≠xu�2≠xf. Generically, 1�neff ap-
proaches a nonzero constant value at low temperatures.
However, in special cases (e.g., the quarter-filled Hub-
bard chain in the infinite U limit) where there is an ef-
fective “particle-hole symmetry” at low energy, rxy will
vanish as a power of T [17].

Let us now discuss what happens if both charge and
spin excitations are gapless on the stripes. We now have
two Luttinger fluids on each stripe for charge and spin
respectively, represented by the fields fc and fs. SU(2)
spin invariance requires Ks � 1 whereas Kc � K as in the
spin-gap case. Here we will discuss a system in which
there is only a coupling of the charge densities between
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FIG. 2. Phase diagram for a system without a spin gap.

neighboring stripes and no exchange coupling. Since
both spin and charge are gapless, electron tunneling
has to be considered in addition to CDW coupling and
Josephson tunneling. The dimensions of the most relevant
CDW and Josephson interactions in the gapless spin
case are DCDW � 1 1 D

�Gap�
CDW , and DSC � 1 1 D

�Gap�
SC ,

where D
�Gap�
CDW and D

�Gap�
SC are their dimensions in the

spin-gap case, Eq. (5). The dimension of the near-
est neighbor single electron tunneling operator is
De �

1
4 �D�Gap�

SC 1 D
�Gap�
CDW 1 2�. It is also easy to check

that the dimensions of the 2kF CDW and spin density
wave (SDW) operators satisfy DCDW � DSDW . Similarly,
the triplet and singlet superconductor couplings have
the same dimension. The phase diagram is shown in
Fig. 2. There is a large region of the phase diagram in
which the electron tunneling operator is relevant, shown
in Fig. 2 as the region below the curve ABC (defined by
the marginality condition De,1 � 2). In this regime the
system initially flows towards a 2D Fermi-liquid fixed
point, which will itself exhibit a BCS instability in the
presence of residual attractive interactions (k0 , 1). For
stronger interstripe couplings the system crystallizes, and
there are also strong coupling smectic metal (non-Fermi-
liquid) and superconducting phases.

The non-Fermi-liquid smectic metal phase is a remark-
able state of matter. Because interstripe tunneling of any
type is irrelevant, the transport across the stripes is incoher-
ent, whereas transport is coherent (and large) inside each
stripe. Recently, evidence of the existence of a “metallic”
stripe ordered state, which we tentatively identify as such a
smectic, has been observed [18] in La1.42xNd0.6SrxCuO4:
Glassy stripe order has been confirmed by neutron and
x-ray scattering studies; the in-plane transport remains
metallic (with at most a logarithmic increase) down to
low temperatures while the interplane resistivity (which
is perpendicular to the stripes) appears to diverge as T !
0. On the same system photoemission experiments [19]
have found strong evidence for one-dimensional electronic
structure. Noda et al. [20] have found that, for x # 1�8,
rxy vanishes (roughly linearly) as T ! 0, while, for x .

1�8, although rxy still decreases strongly at low tempera-
tures, it appears to approach a finite value. They took
this behavior to indicate a crossover from one- to two-
dimensional metallic conduction at x � 1�8. We propose,
instead, that the system is a smectic for a range of x, and
that the crossover indicates that the stripes are nearly quar-
ter filled, and have an approximate particle-hole symmetry
for x , 1�8, while particle-hole symmetry is broken for
x . 1�8. Finally, the present results suggest the existence
of a smectic metal state of the 2DEG in large magnetic
fields [4,5,21]; see however [22].
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