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Creation of Localized Optical Waves that Do Not Obey the Radiation Condition at Infinity
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We show that the diffraction of a shocking optical pulse formed in a nonlinear transparent dielectric
creates an optical missile, or localized radiation field whose amplitude and energy decays are slower
than 1�R and 1�R2, respectively, far from the aperture. Dispersion does not eliminate, but limits missile
behavior to a finite range. Experimental techniques for optical missile generation are suggested.

PACS numbers: 42.65.Re, 42.65.Tg
The rapid advances of laser technology in the past
decade have made the production of intense pulses of light
with only a few optical oscillations feasible. Because of
the high intensities concentrated in these pulses, of the
order of tens of TW�cm2, the possibility has been recently
[1,2] proposed, as first conjectured by Rosen [3], of
nonlinearly generating optical shocks; that is, steepening
and breaking the optical cycles upon propagation of an
intense femtosecond pulse in a nonlinear transparent
dielectric. These shocks can form over a propagation
distance of a few micrometers, prior to the formation of
the more known shocks in the pulse envelope [1]. Optical
cycle steepening in realistic nonlinear dielectrics (fused
silica), including dispersive and absorption effects of any
order, has been recently evidenced from theoretical and
numerical studies from Maxwell equations [1,2].

From the early work by Christov [4], on the other
hand, it is known that the diffraction properties of few-
cycle pulses may differ substantially from those of
quasimonochromatic light. Diffraction is a dispersive
phenomenon in the sense that different frequencies
diffract differently. The diffraction of femtosecond
pulses, having a broad content of frequencies, will then
induce some dispersionlike transformations in the pulse
form—transformations which need to be understood and
therefore are being intensively studied [5–7]. The best
understood among them is perhaps the differentiation of
the pulse temporal form upon propagation from an aper-
ture to the far field, or time-derivative effect [5,8]. Closely
connected with it [8] is the concept of “electromagnetic
missile,” described for the first time by Wu [9] in the
context of antenna theory. Electromagnetic missiles are
radiation fields from spatially localized sources which do
not obey the radiation condition at infinity (1�R2 decay
in energy), but decay at slower rates along a specified di-
rection away from the source [9]. They can be generated,
in principle, by driving the localized source with pulses
having a singular derivative stronger than

p
t, i.e., tm, with

m , 1�2 [10], but their practical realization has run up
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against the difficulty of physically producing pulses with
the required sudden jumps [11].

In this Letter, we show that an optical shock formed
in a nonlinear transparent dielectric contains the required
jumps to produce the missile effect. The diffraction of
a shock pulse by an aperture originates a radiation field
whose amplitude and energy present a far field decay sig-
nificantly slower than 1�z and 1�z2, respectively, along the
perpendicular direction z to the aperture. Numerical simu-
lations including dispersion and absorption indicate that
the missile effect survives up to a distance proportional
to the steepest gradient of the cycles reached in the non-
linear dielectric. These optical missiles could be of interest
for many practical applications, as distance measurements,
alignment, as well as transmission of information and en-
ergy over long distances.

Let us first derive our basic equation for femtosecond
pulse propagation. We consider a polarized pulsed beam of
light E�x�, z, t�, x� � �x, y�, propagating along the posi-
tive z direction according to the wave equation in a ma-
terial medium, DE 2 c22≠ttE � m0≠ttP, where P is the
medium polarization. As shock formation is expected to
occur under weak dispersion conditions [1–3], we ne-
glect, for the moment, material dispersion by writing the
polarization as P � ´0x �1�E 1 Pnl�E�, where Pnl is a
nonlinear function of E. The linear part of P can be
embedded in the second term of the left-hand side of the
wave equation by identifying c with the light velocity in
the medium. Next, by introducing the local coordinates
t0 � t 2 z�c, z0 � z, we extract from E its rapid variation
with z owing to the pulse transport at c; then the remainder
dependence of E�x�, z0, t0� on the new propagation coor-
dinate z0 describes only pulse changes due to diffraction
and nonlinearity. If, moreover, these changes are slow
enough so that j≠z0Ej ø j≠t0Ej�c, the following first order
propagation equation can be readily derived from the wave
equation:

�2�c�≠z0t0E � D�E 2 m0≠t0t0Pnl , (1)
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where D� is the transversal Laplace operator. Note that by
writing E and Pnl as enveloped carrier oscillations, Eq. (1)
transforms into the nonlinear envelope equation [12] (in
nondispersive media) under the slowly evolving wave ap-
proximation (SEWA). Thus Eq. (1) describes wave propa-
gation within the same degree of approximation—E does
not significantly change due to diffraction and nonlineari-
ties as it covers its own characteristic axial length of varia-
tion—but for an arbitrary wave form E, including those
with subcycle structure. The present extension of the
SEWA allows us to perform the analysis of shock forma-
tion and diffraction on a unified basis, which, moreover,
will accurately reproduce the predictions of Maxwell equa-
tions related to these phenomena.

In the case of a plane pulse (D�E � 0) in a non-
linear material, Eq. (1) reduces to the quasilinear
equation ≠z0E 1 s�E�≠t0E � 0, where s�E� � �c�2� 3

m0�dPnl�dE�, which describes the formation of a shock
[13] from a smooth pulse E�0, t0� � f�t0�, as illustrated in
Figs. 1(a) and 1(b) for a medium with cubic nonlinearity
Pnl � ´0x �3�E3. Indeed the solution E�z, t0� of the
quasilinear equation can be obtained [13] in parametric
form by the method of characteristics,

E � f�t�, t0 � t 1 s�t�z , (2)

FIG. 1. Propagation in a Kerr medium (Pnl � ´0x
�3�E3) of

the input “one-cycle” pulse f�t0� � �t0�T�f0 exp�2t02�T 2�,
T � 3 fs, f2

0 x �3� � 0.01 (dashed line). (a) At z0 � z0sh,1 �
0.145 mm a first shock is in imminent formation at t0sh,1 �
20.357 fs. (b) At z0 � z0sh,2 � 0.215 mm a second shock is
being formed at t0sh,2 � 4.454 fs, and the pulse is discontinuous
in the first shock. (c) On-axis amplitude decay of the pulses
in (a) and (b) on propagation from an aperture of radius
r � 0.5 mm. (d) On-axis energy decay of the pulses in (a) and
(b) on propagation from the aperture.
where s�t� � s� f�t��. The shock in the electric field
[1–3] is characterized by the condition ≠t0E � `. From
Eq. (2) we obtain ≠t0E � ft�t���1 1 st�t�z� (the sub-
script t denotes differentiation with respect to t), which
diverges at z � 21�st�t�. The shock then appears for
the first time at the distance zs � min�21�st�t��, with
zs . 0. Thus setting stt�t� � 0, one determines a cer-
tain value of t, say ts, which yields a shock distance
zs � 21�st�ts�. At zs, the shock takes place at the lo-
cal time t0s � ts 2 s�ts��st�ts�.

After recalling these properties, let us now investigate
how the slope of E goes to infinity when t0 approaches
the shock time t0s at the distance zs of imminent wave
breaking, as in Fig. 1(a). For this, we let �t 2 ts� ! 0;
then �t0 2 t0s� ! 0 also, and the ways both approach zero
are related by

�t0 2 t0s� � 2�t 2 ts�3sttt�ts��6st�ts� . (3)

To obtain Eq. (3) we have written �t0 2 t0s� � �t 2 ts� 1

�s�t� 2 s�ts��zs, introduced zs � 21�st�ts�, the
power expansion s�t� � s�ts� 1 st�ts� �t 2 ts� 1

. . . , used that stt�ts� � 0, and retained the first nonva-
nishing term. For particular forms of Pnl and f�t0�, one
can get sttt�ts� � 0. In this case the right-hand side
of Eq. (3) will be ~�t 2 ts�4, and so on. Finally, E in
the vicinity of ts can be approached by E � f�ts� 1

ft�ts� �t 2 ts�, or from Eq. (3),

E�zs, t0� � f�ts� 2 ft�ts�
∑

6st�ts�
sttt�ts�

�t0 2 t0s�
∏1�3

.

(4)

This equation gives the explicit temporal behavior of the
electric field around the shock time t0s when the wave is go-
ing to break (zs), and shows that the slope of E approaches
infinite as that of �t0 2 t0s�1�3 � sgn�t0 2 t0s� jt0 2 t0sj

1�3

[in the case sttt�ts� � 0, the corresponding functional
form would be sgn�t0 2 t0s� jt0 2 t0sj

1�4].
At z . zs, E jumps from one to another branch of the

three-valued expression (2) for E [Fig. 1(b)]. The condi-
tion for such a discontinuous solution of the quasilinear
equation to represent physically admissible wave propa-
gation is the contents of the Rankine-Hugoniot theorem
[13], �Ei 2 Ef� �dt0s�dz0� � �cm0�2� �Pi

nl 2 P
f
nl�, relat-

ing the “velocity” of propagation 1�ys � dt0s�z��dz of the
discontinuity t0s�z� with the jumps Ei 2 Ef and Pi

nl 2

P
f
nl in E and Pnl. This velocity reproduces Rosen’s re-

sult for cubic polarization from the Maxwell equations [3]
when x �3�E2 ø 1, as expected from the assumptions of
the SEWA.

We can then conclude that an intense enough optical
pulse in an ideal nonlinear dielectric develops an infinite
gradient of functional form sgn�t0� jt0jm, with 0 # m #

1
3

(the case m � 0 describing wave breaking).
On the other hand, we know from the mathematical the-

ory of electromagnetic and acoustic missiles that the above
infinite gradients are within the required ones [9,10] for
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the signal driving a localized source to produce the mis-
sile effect. Specifically, missile behavior is obtained for
0 # m ,

1
2 . From its first description by Wu [9], how-

ever, published theoretical and experimental [14] meth-
ods of missile generation put emphasis on finding spatial
dispositions of electric currents, radiating point, or line
charges, to conform with the plane wave fronts of the
launched pulse; but the difficult problem of how to pro-
duce the required infinite gradients is relegated to a less
important emphasis, or left aside entirely. Analytical pulse
forms as tm exp�2at�, 0 # m , 1

2 [10], or rectangle func-
tions [11] are often used, at the same time that our present
inability to physically generate them is recognized [11].
Similarly, Ffowcs [15] studied the missile effect for the
diffraction of acoustic pulses, modeled as Heaviside step
functions. Moreover, he suggested that nearly sharp front
pulses can be generated by the impact of a vortical flow on
an infinitely thin supersonic aerofoil. The present analy-
sis suggests that pulse shocking in a nonlinear dielectric
is a suitable physical mechanism to generate the needed
rise time in an optical signal. Driving a finite source, e.g.,
a circular aperture, with the shock pulse, a missile in the
optical range of frequencies can be created.

Let us then analyze its asymptotic amplitude and energy
decays. The free propagation of a pulse f�t0� after diffrac-
tion by a circular aperture of radius r0 at z � 0 can be de-
scribed by Eq. (1) with Pnl � 0, i.e., ≠z0t0E � �c�2�D�E,
which in the frequency domain is the well-known paraxial
wave equation ≠Ê�≠z0 � �c�2iv�D�Ê. The propagation
of each component frequency v, of amplitude f̂�v�,
is then described by the Huygens-Fresnel integral for
a circular aperture, and can be found in standard text-
books. In particular, the on-axis (x� � 0, z . 0) field is
Êon�z, v� � f̂�v� �1 2 exp�2ivr2

0 �2cz��, which in time
domain yields

Eon�z, t0� � f�t0� 2 f�t0 2 r2
0 �2cz� . (5)

A similar expression was found from Maxwell equations
for the electric field from a disk of surface current f�t0�
[11]. For z sizably greater than the diffraction length
z0 � r2

0 �2cT , where T is a typical rise time of f�t0�,
Eq. (5) can be approached by Eon�z� � ft0�t0� �r2

0 �2cz�.
This is the time-derivative effect, valid for very general
diffracting apertures [8], along with the classical ampli-
tude decay 1�z in the far field. If the pulse contains a
local rise time T � 0, however, the 1�z regime is never
reached. According to Eq. (5), the on-axis field from a
diffracted discontinuous pulse (m � 0) does not decay at
the time of discontinuity, as shown in Fig. 2. For a gen-
eral shock pulse f�t0� � sgn�t0� jt0jm, 0 # m #

1
3 , Eq. (5)

leads to a field decay 1�zm at the shock time. In Fig. 1(c)
we show the nonclassical amplitude decays (solid lines)
from diffracted shock pulses in comparison with the clas-
sical decay 1�z (dashed line) for the “same” pulse prior
passage through the nonlinear medium (i.e., with the same
maximum amplitude and energy, but without shock).
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FIG. 2. On-axis pulse form after diffraction from a circular
aperture of radius r0 � 1.0 mm. The pulse at the aperture is
f�t0� � sgn�t0� exp�2t0 2�T2�, T � 3 fs.

From Eq. (5) the on-axis time integrated intensity Ion �R
E2

on dt can be found to be

Ion�z� �
Z `

0
dv j f̂�v�j2�1 2 cos�vr2

0 �2cz��

�
Z `

2cz�r2
0

dv j f̂�v�j2, (6)

the last expression giving the asymptotic behavior for large
z [9]. Introducing the asymptotic form of the spectra of
shock pulses [16] f̂�v� � 1�v11m, 0 # m #

1
3 , we ob-

tain the energy density asymptotic decay Ion � 1�z112m.
Figure 1(d) shows these nonclassical energy decays for
diffracted shock pulses in comparison with the decay 1�z2

for the nonshocked pulse.
Before concluding, it remains to analyze how the inclu-

sion of material dispersion may alter the preceding results.
Recent numerical studies from the Maxwell equations [1,2]
indicate that dispersion does not inhibit the process of
shock formation, i.e., of cycle steepening, but prevents the
field from breaking, and can limit the steepest gradient
reached. Figure 3(a) is taken from Ref. [2], and shows in-
complete carrier-shock formation (solid line) in the incom-
ing pulse E�t0� � f0 sech�t�t0� cos�v0t0� (dashed line) on
propagation in fused silica, modeled as a triple-resonant
Lorentz medium with Kerr nonlinearity. Dispersion of
any order is then included, and in particular, a group ve-
locity dispersion of 2.8 fs2�mm at the selected frequency
v0 � 1.52 fs21. From our Eq. (5), we have calculated
the diffracted on-axis pulse form. A significant survival
of the peak amplitude with respect to the diffracted non-
shocked pulse is apparent [Fig. 3(b)], even when an in-
finite slope was not reached in the material. The peak
amplitude versus z is depicted in Fig. 3(c), and shows an
increase of the depth of field (1�e amplitude decay) of
nearly three times. In Fig. 3(d) we have multiplied the
curves of Fig. 3(c) by z, to show that the decay of the
diffracted shocking pulse is slower than 1�z over three or
four times the distance z0 of the nonshocked pulse. Addi-
tional numerical simulations with shocks of different thick-
nesses or rise times T allow us to estimate the range of
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FIG. 3. In all figures the dashed lines refer to the pulse f�t0� �
f0 sech�t�t0� cosv0t0, t0 � 5 fs, v0 � 1.52 fs21, and the solid
lines to its temporal form after a propagation distance 7.5 mm
in fused silica, with f2

0 x �3� � 0.06. They are shown in (a).
(b) On-axis pulse forms after a propagation distance z � 9z0
behind an aperture of radius r0 � 0.5 mm. The quantity z0 �
r2

0 �2cT is the diffraction length, with T � 1�v0 the charac-
teristic rise time of the nonshocked pulse. (c) On-axis peak
amplitude, and (d) on-axis peak amplitude multiplied by z�z0
versus propagation distance from the aperture.

missile behavior by r2
0 �2cT , where the rise time is defined

as T � max j fj� max j ft0 j (giving the reasonable values
T � 1�v0, or phase of 1 radian for a sinusoidal wave,
and T � 0 for an actual shock). To minimize the shock
rise time, the selected dielectric should have a broad spec-
tral band of small dispersion, high 3 or 5 order nonlinear
susceptibility (organic materials as PTS with x �3� 6 orders
of magnitude higher than fused silica are today available
[17]) and high damage threshold to allow for high pulse
intensity.

To sum up, we have found that nonlinear optical
carrier shocks contain the required sharp gradients to
create optical missiles. Slow decays between 1�z0

and 1�z1�3 in amplitude, and between 1�z and 1�z5�3

in energy can be reached in a transparent dielectric.
In practice, we have shown that shocking a pulse in a
suitable nonlinear medium prior to diffraction results in a
substantial improvement of the beam depth of field. This
effect could be experimentally verified by tightly focusing
a pulse (to achieve the needed intensities), and placing in
the focal region (where the pulse can be regarded as plane)
a thin nonlinear dielectric having an opaque outer face
with a hole of small radius r0. Owing to the smallness of
the aperture, however, this setup yields a small depth of
field (with or without missile effect). To be suitable for
large distance applications, we must let the shock pulse
expand behind the thin dielectric, and then collimate its
expanding spherical wave front, e.g., with a parabolic
reflective dish (whose finite transversal radius r0 is now
the effective aperture) placed at the appropriate distance
behind the focus. A similar arrangement was used in
Ref. [14] to investigate the missile effect from a point
antenna placed at the dish focus. Note that placing the
thin dielectric in place of the point source, the reflected
pulse at the far field will resemble the second derivative
of the shock pulse, a fact which can enhance the shock
gradient, and therefore lessen the smoothing effects of
material dispersion.
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