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The size of the average fluctuations of net baryon number and electric charge in a finite volume of
hadronic matter differs widely between the confined and deconfined phases. These differences may
be exploited as indicators of the formation of a quark-gluon plasma in relativistic heavy-ion collisions,
because fluctuations created in the initial state survive until freeze-out due to the rapid expansion of the
hot fireball.

PACS numbers: 25.75.–q, 05.40.–a, 12.38.Mh
Fluctuations in the multiplicities and momentum dis-
tributions of particles emitted in relativistic heavy-ion
collisions have been widely considered as probes of ther-
malization and the statistical nature of particle production
in such reactions [1–6]. The characteristic behavior of
temperature and pion multiplicity fluctuations in the final
state has been proposed as a tool for the measurement of
the specific heat [7] and, specifically, for the detection of
a critical point in the nuclear matter phase diagram [8].
Although the hot and dense matter created in heavy-ion
collisions is not directly observed at the critical point (if
one exists) but rather at the point of thermal freeze-out
where particles decouple from the system, certain features
of the critical fluctuations were shown to survive due to
the finite cooling rate of the fireball [9].

We here draw attention to a different type of fluctua-
tions which are sensitive to the microscopic structure of
the dense matter. If the expansion is too fast for local fluc-
tuations to follow the mean thermodynamic evolution of
the system, it makes sense to consider fluctuations of lo-
cally conserved quantities that show a distinctly different
behavior in a hadron gas (HG) and a quark-gluon plasma
(QGP). Characteristic features of the plasma phase may
then survive in the finally observed fluctuations. This is
most likely if subvolumes are considered which recede
rapidly from each other due to a strong differential collec-
tive flow pattern as it is known to exist in the final stages
of a relativistic heavy-ion reaction.

Three observables satisfy these constraints and are, in
principle, measurable: the net baryon number, the net elec-
tric charge, and the net strangeness. Here we will focus on
the first two as probes of the transition from hadronic mat-
ter to a deconfined QGP. Because they are sensitive to the
microscopic structure of the matter, their unusual behav-
ior would provide specific information about the structural
change occurring as quarks are liberated and chiral sym-
metry is restored at high temperature. Our proposal differs
from recent suggestions involving fluctuations in the abun-
dance ratios of charged particles [10] and in the baryon
number multiplicity [11] in that we consider only locally
conserved quantities. We also disregard dynamical fluctua-
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tions of the baryon density caused by supercooling and
bubble formation [12].

We consider matter which is meson dominated, i.e.,
whose baryonic chemical potential m and temperature T
satisfy m & T . Our arguments will thus apply to heavy-
ion collisions at CERN Super Proton Synchrotron (SPS)
energies and above. In the following, we first explain
qualitatively how hadronic and quark matter differ with
respect to net baryon number and electric charge fluctua-
tions. We then present analytical calculations supporting
the argument. Finally, we estimate the rate at which ini-
tial state fluctuations are washed out during the expan-
sion of the hot matter in the final, hadronic stage before
thermal freeze-out.

In a hadron gas nearly two thirds of the hadrons (for
m ø T mostly pions) carry electric charge 61. In the
deconfined QGP phase the charged quarks and antiquarks
make up only about one half of the degrees of freedom,
with charges of only 6

1
3 or 6

2
3 . Consequently, the fluc-

tuation of one charged particle in or out of the considered
subvolume produces a larger mean square fluctuation of
the net electric charge if the system is in the HG phase.
For baryon number fluctuations the situation is less obvi-
ous because in the HG baryon charge is now carried only
by the heavy and less abundant baryons and antibaryons.
Still, all of them carry unit baryon charge 61 while the
quarks and antiquarks in the QGP have only baryon num-
ber 6

1
3 . It turns out that, as m�T ! 0, the fluctuations

are again larger in the HG, albeit by a smaller margin
than for charge fluctuations. At SPS energies and below
the difference between the two phases increases since the
stopped net baryons from the incoming nuclei contribute
to the fluctuations and more so in the HG than in the
QGP phase.

Generally, if O is conserved and m is the associated
chemical potential, in thermal equilibrium the mean square
deviation of O is given by

�DO �2 � �O 2� 2 �O �2 � T
≠�O �
≠m

, (1)

where �O � � TrO e2�H 2mO ��T �Tre2�H 2mO ��T . For
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O � Nb the right-hand side (rhs) of (1) is T times the
baryon number susceptibility which was discussed earlier
in the context of possible signatures for chiral symmetry
restoration in the hadron-quark transition [13].

In general, the relative fluctuation of any extensive
variable vanishes in the thermodynamic limit V ! `

because the expectation value �O � increases linearly with
the volume V while the fluctuation DO grows only likep

V . In reality, the value of a conserved quantum number
of an isolated system does not fluctuate at all. However,
if we consider a small part of the system, which is large
enough to neglect quantum fluctuations but small enough
that the entire system can be treated as a heat bath, Eq. (1)
can be used to calculate the statistical uncertainty of the
value of the observable in the subsystem. This is the
scenario considered here.

We first discuss the fluctuations of the net baryon num-
ber. Since baryons are heavy, in the dilute HG phase we
can apply the Boltzmann approximation [14]:

N6
b �T , m� � N6

b �T , 0� exp�6m�T � . (2)

Here N6
b denotes the number of baryons �1� and an-

tibaryons �2�, respectively. The net baryon number is
Nb � N1

b 2 N2
b . Then the net baryon number fluctua-

tions in the hadronic gas are given by

�DNb�2
HG � N1

b 1 N2
b � 2N6

b �T , 0� cosh�m�T � . (3)

This result makes sense, because the fluctuation of either
a baryon or an antibaryon into or out of the subvolume
changes the net baryon number contained in it.

To estimate �DNb�2 in the QGP phase, we use the exact
result for the baryon number density in an ideal gas of
massless quarks and gluons (for two massless flavors):

1
V

�DNb�2
QGP �

2
9

T3

"
1 1

1
3

µ
m

pT

∂2
#

, (4)

where V denotes the volume of the considered subsystem.
It is convenient to normalize this by the entropy density
(again for two quark flavors plus gluons):

1
V

SQGP �
74p2

45
T3

"
1 1

5
37

µ
m

pT

∂2
#

. (5)

The later expansion being nearly isentropic, the ratio

�DNb�2

S

Ç
QGP

�
5

37p2

"
1 1

22
111

µ
m

pT

∂2

1 . . .

#
, (6)

provides a useful measure for the fluctuations predicted
for a transient quark phase. The entropy can be estimated
from the final hadron multiplicity [16].

For high collision energies (m�T ! 0), the ratio (6)
approaches a constant; even for SPS energies, the m-
dependent correction is at most 5%. The many resonance
contributions make it difficult to write down an analytic
expression like (5) for the entropy density in a hadron gas,
but it is clear that the stronger m dependence of (3) com-
pared to (4) induces a stronger m dependence of the cor-
responding ratio (6) in the HG phase. This translates into
a stronger beam energy dependence of the ratio (6) near
midrapidity in the HG than in the QGP phase.

Before providing numerical illustrations, let us compare
these results with those for net charge fluctuations. All
stable charged hadrons have unit electric charge; again
using the Boltzmann approximation, which only for pions
introduces a small error of at most 10%, we find

�DQ�2
HG � Nch , (7)

where Nch is the total number of charged particles emitted
from the subvolume. To find the expression for a non-
interacting QGP, we introduce the electrochemical poten-
tial f which couples to the electric charges qu �

2
3 and

qd � 2
1
3 of the up and down quarks:

�Q�f��
V

�
X

f�u,d

qf

"µ
1
3

m 1 qff

∂
T2

1
1

p2

µ
1
3

m 1 qff

∂3
#

. (8)

We differentiate with respect to f at f � 0 and normalize
to the entropy density:

�DQ�2

S

Ç
QGP

�
25

74p2

"
1 1

22
111

µ
m

pT

∂2

1 . . .

#
. (9)

This is a factor of 5
2 larger than the corresponding ratio (6)

for baryon number fluctuations, due to the larger electric
charge of the up quarks, but shows the same weak m depen-
dence. The main difference to baryon number fluctuations
arises in the HG phase: Since at SPS and higher energies
the rhs of (7) is dominated by pions and meson resonances,
its m dependence is now also weak. In contrast to baryon
number fluctuations, charge fluctuations thus show a weak
beam energy dependence in either phase, and only their
absolute values differ [17].

We now give some numerical values for the fluctuation�
entropy ratios at SPS and Relativistic Heavy-Ion Collider/
Large Hadron Collider (RHIC/LHC). At the SPS, the
net baryon number per unit of rapidity is measured:
dNb�dy � 92 [18]. The antibaryon�baryon ratio is
�0.085 [15,19], corresponding to dN2

b �dy � 8.5. Com-
bined with a specific entropy of S�Nb � 36 [20], Eq. (3)
thus gives �DNb�2�S � 0.033 if the fluctuations reflect an
equilibrium HG. If they have a QGP origin, Eq. (6) gives
�DNb�2�S � 0.014 [14], i.e., about a factor of 2.4 less.
The charge fluctuations in a HG can be evaluated from
the measured charged multiplicity density at midrapidity,
dNch�dy � 400 [18,19,21], after correcting for resonance
decays [16]. Assuming hadrochemical freeze-out at
T � 170 MeV [15], 60% of the observed pions stem
from such decays [22]. One finds �DQ�2�S � 0.06. If
the charge fluctuations arise from a QGP, Eq. (9) gives
�DQ�2�S � 0.036, i.e., 60% of the HG value.

It is instructive to extrapolate these results to RHIC/
LHC energies (i.e., m�T ! 0). We again assume hadro-
chemical freeze-out at T � 170 MeV and use the particle
multiplicities predicted by hadrochemical models [23,24].
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One obtains �DNb�2�S � 0.020 in the HG, compared to
0.0137 in the QGP, and �DQ�2�S � 0.067 in the HG
phase, compared to 0.034 in the QGP. Only the first of
these four numbers, corresponding to the hadronic baryon
number fluctuations, changes by more than 10% as one
proceeds from SPS to RHIC (see Fig. 1).

These estimates, including our corrections for reso-
nance decays, refer to ideal gases in equilibrium. Future
work should address interaction effects on the thermal
fluctuations in HG and QGP and treat resonance decays
kinetically. We also point out potentially important
nonequilibrium aspects: The fluctuation�entropy ratios
in the QGP will be even lower (facilitating the discrimi-
nation against HG) if initially the QGP is strongly gluon
dominated [25] and hadronizes before the concentrations
of the (baryon) charge carriers q, q̄ saturate [26], or if
hadronization itself generates additional entropy.

We now discuss whether the difference between the two
phases (typically a factor of 2) is really observable. Even
if a QGP is temporarily created in a heavy-ion collision,
all hadrons are emitted after rehadronization. Thus, it is
natural to ask whether the fluctuations will not always
reflect the hadronic nature of the emitting environment.
We must show that the time scale for the dissipation of
an initial state fluctuation is larger than the duration from
hadronization to final particle freeze-out. It is essential
to our argument that fluctuations of conserved quantum
numbers can be changed only by particle transport and thus
are likely to be frozen in at an early stage, similar to the
abundances of strange hadrons, which are frozen early in
the reaction and may even reflect the chemical composition
of a deconfined plasma [27].

For our estimate we assume for simplicity that the fire-
ball expands mostly longitudinally, with a boost-invarant
(Bjorken) flow profile. Longitudinal position and rapidity
are then directly related. Strong longitudinal flow exists
in collisions at the SPS [28], and the Bjorken picture is
widely expected to hold for collisions at RHIC and LHC.
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FIG. 1. Schematic drawing of the beam energy dependence of
the net baryon number and charge fluctuations per unit entropy
for a hadronic gas and a quark-gluon plasma.
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Consider a slice of matter spanning a rapidity interval Dh

at the initial time ti . [t is the proper time and h �
tanh21�z�t�.] Its proper volume is Vi � AtiDh where A
is the transverse area of the fireball. We denote the initial
total baryon density by ri � rb1b̄�ti�. We assume Ti �
170 MeV and Tf � 120 MeV for the initial and final tem-
perature [29], corresponding to ti � 2.5 fm�c and tf �
7 fm�c at the SPS and ti � 5 fm�c and tf � 14 fm�c
at RHIC.

Let us first give a qualitative argument [30] for the sur-
vival of a baryon number fluctuation within a rapidity in-
terval Dh � 1. Between ti and tf , this interval expands
from a length of 5 to 14 fm (we use the RHIC numbers
here). Baryons have average thermal longitudinal veloc-
ity component ȳz �

1
2 ȳ, where ȳ � �jyj� �

p
8T�pM

is the mean thermal velocity (ȳ � 0.65 for baryons with
M � 1 GeV at T � 170 MeV). Without rescattering, be-
tween ti and tf a baryon which is initially at the center of
this interval can travel on average only about 3 fm in the
beam direction; hence, it will not reach the edge of the in-
terval before freeze-out. Because of rescattering in the hot
hadronic matter, the baryon number actually diffuses more
slowly, and a fluctuation will even survive in a smaller ra-
pidity interval.

For a quantitative argument, we need to estimate the flux
of baryons in and out of the considered rapidity interval.
Two effects need to be evaluated in this context. First, the
difference in the baryon densities inside and outside the
subvolume causes a difference in the values of the mean
flux of baryons into and out of the volume. Denoting by
ȳ�t� the average thermal velocity of baryons, one finds
that the initial fluctuation decays exponentially:

DNb�t� � DN
�i�
b exp

"
2

1
2Dh

Z t

ti

dt

t
ȳ�t�

#
. (10)

In the Bjorken scenario, the temperature T falls as t21�3

and one finds for the remaining fluctuation at freeze-out

DNb�tf� � DN
�i�
b exp

(
2

3ȳi

Dh
�1 2 �Tf�Ti�1�2	

)
. (11)

For the numbers considered here, the exponent is very
close to 2ȳi��2Dh�, implying that the fluctuation survives
if Dh is larger than ȳi�2 � 0.33.

The second effect that can wash out the initial fluctua-
tion is fluctuations in the baryon fluxes exchanged with
the neighboring subvolumes. These could eventually re-
place the initial fluctuation with a thermal fluctuation that
is characteristic of the conditions at freeze-out. The total
number of baryons entering N

�en�
b or leaving N

�lv�
b the sub-

volume between ti and tf is given by

N
�en�
b � N

�lv�
b �

A
2

Z tf

ti

rb�t�ȳ�t� dt . (12)

A similar calculation yields N
�en�
b � N

�lv�
b � N

�i�
b ȳi�2Dh.

N
�en�
b and N

�lv�
b fluctuate independently; one therefore
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expects that the ratio of the mean square fluctuation of the
number of exchanged baryons N

�ex�
b to the average initial

fluctuation is

�DN
�ex�
b 	2

�DN
�i�
b 	2

�
ȳi

Dh
, (13)

which is smaller than unity for Dh $ ȳi � 0.65.
We conclude that the short time between hadronization

and final freeze-out precludes the readjustment of net
baryon number fluctuations in rapidity bins Dh $ 1.
A similar calculation applies to net charge fluctuations.
Several refinements of our estimate are possible but are ex-
pected to partially cancel each other: Additional transverse
expansion lets the temperature drop faster than in the Bjor-
ken scenario. During hadronization cooling is impeded
by the large change in the entropy density between QGP
and HG. And finally, the short mean free path of baryons
in hot hadronic matter will significantly reduce our above
estimates of the dissipation of an initial state fluctuation.

In conclusion, we have argued that the difference in
magnitude of local fluctuations of the net baryon number
and net electric charge between confined and deconfined
hadronic matter is partially frozen at an early stage in
relativistic heavy-ion collisions. These fluctuations may
thus be useful probes of the temporary formation of a
deconfined state in such collisions. The event-by-event
fluctuations of the two suggested observables for collisions
with a fixed value of the transverse energy dET�dy or of
the energy measured in a zero-degree calorimeter would
be appropriate observables that could test our predictions.
Further discrimination can be achieved by measuring the
beam energy dependence of the fluctuations: In the QGP
the ratio �DQ�DNb�2 �

5
2 of charge to baryon number

fluctuations is a beam-energy independent constant; in the
HG phase it shows a significant beam energy dependence
between SPS and RHIC/LHC energies.
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Note added.—After finishing this work we received a
paper by Jeon and Koch [31] who discuss similar issues.
At the SPS they get �DQ�2�SjHG � 0.13 which is more
than twice our value due to a smaller resonance decay
correction to �DQ�2 (30% instead of our 50%) and their
omission of a 35% extra contribution to S [16] from heavy
particles (mostly the net baryons and strange hadrons).
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