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Complementarity of the Maldacena and Randall-Sundrum Pictures
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We revive an old result, that one-loop corrections to the graviton propagator induce 1�r3 corrections
to the Newtonian gravitational potential, and compute the coefficient due to closed loops of the U�N�
N � 4 super-Yang-Mills theory that arises in Maldacena’s anti–de Sitter conformal field theory corre-
spondence. We find exact agreement with the coefficient appearing in the Randall-Sundrum brane-world
proposal. This provides more evidence for the complementarity of the two pictures.

PACS numbers: 11.10.Kk, 11.10.Gh, 11.25.Mj
It is an old, and seemingly forgotten, result that one-
loop corrections to the graviton propagator induce 1�r3

corrections to the gravitational potential [1,2]:

V �r� �
Gm1m2

r

µ
1 1

aG
r2

∂
, (1)

where G is the four-dimensional Newton’s constant, h̄ �
c � 1, and a is a purely numerical coefficient given, in the
case of spins s # 1, by 45pa � 12N1 1 3N1�2 1 N0,
where Ns are the numbers of particle species of spin s
going around the loop [3–5]. However, the importance
of this result has recently become apparent in attempts
[6–10] to relate two topical but, at first sight, different
developments in quantum gravity. These are Maldacena’s
anti–de Sitter conformal field theory (AdS�CFT) corre-
spondence [11–13] and the Randall-Sundrum brane-world
mechanism [14].

The AdS�CFT correspondence in general relates the
gravitational dynamics of a �d 1 1�-dimensional anti–
de Sitter spacetime, AdSd11, to a d-dimensional confor-
mal field theory, CFTd . In the case of d � 4, Maldacena’s
conjecture, based on the decoupling limit of D3-branes
in Type IIB string theory compactified on S5, then relates
the dynamics of AdS5 to an N � 4 superconformal
U�N� Yang-Mills theory on its four-dimensional boundary
[11]. Other compactifications are also possible, leading
to different SCFT’s on the boundary. We note that, by
choosing Poincaré coordinates on AdS5, the metric may be
written as

ds2 � e22y�L�dxm�2 1 dy2, (2)

in which case the superconformal Yang-Mills theory is
taken to reside at the boundary y ! 2`.

The Randall-Sundrum mechanism, on the other hand,
was originally motivated not via the decoupling of grav-
ity from D3-branes, but rather as a possible mechanism
for evading Kaluza-Klein compactification by localizing
gravity in the presence of an uncompactified extra dimen-
sion. This was accomplished by inserting a positive tension
3-brane (representing our spacetime) into AdS5. In terms
of the Poincaré patch of AdS5 given above, this corre-
sponds to removing the region y , 0 and either joining
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on a second partial copy of AdS5 or leaving the brane at
the end of a single patch of AdS5. In either case the re-
sulting Randall-Sundrum metric is given by

ds2 � e22jyj�L�dxm�2 1 dy2, (3)

where y [ �2`, `� or y [ �0, `� for a “two-sided” or
“one-sided” Randall-Sundrum brane, respectively.

The similarity of these two scenarios led to the notion
that they are in fact closely tied together. To make this
connection clear, consider the one-sided Randall-Sundrum
brane. By introducing a boundary in AdS5 at y � 0, this
model is conjectured to be dual to a cutoff CFT coupled to
gravity, with y � 0, the location of the Randall-Sundrum
brane, providing the UV cutoff. This extended version of
the Maldacena conjecture [15] then reduces to the stan-
dard AdS�CFT duality as the boundary is pushed off to
y ! 2`, whereupon the cutoff is removed and gravity
becomes completely decoupled. Note, in particular, that
this connection involves a single CFT at the boundary of
a single patch of AdS5. For the case of a brane sitting be-
tween two patches of AdS5, one would instead require two
copies of the CFT, one for each of the patches.

It has been suggested [7–9] that a crucial test of this
Randall-Sundrum version of the Maldacena conjecture
would be to compare the 1�r3 corrections to Newton’s
law in both pictures. From the above, we see that the
contribution of a single CFT, with �N1, N1�2, N0� �
�N2, 4N2, 6N2�, is

V �r� �
Gm1m2

r

µ
1 1

2N2G
3pr2

∂
. (4)

Using the AdS�CFT relation N2 � pL3�2G5 [11] and the
one-sided brane-world relation G � 2G5�L [8,14], where
G5 is the five-dimensional Newton’s constant and L is the
radius of AdS5, this becomes

V �r� �
Gm1m2

r

µ
1 1

2L2

3r2

∂
. (5)

The coefficient of the 1�r3 term is 2�3 of the Randall-
Sundrum result quoted in [14] but in fact agrees with the
more thorough analysis of [16]. We shall confirm be-
low that a more careful analysis of the Randall-Sundrum
© 2000 The American Physical Society
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picture using the results of [9,17] yields exactly the same
answer as the above AdS�CFT calculation, thus provid-
ing strong evidence for the conjectured duality of the two
pictures.

First we derive (4) in more detail by computing the
lowest order quantum corrections to solutions of Einstein’s
equations. Working with linearized gravity, we begin by
writing the metric as

gmn � hmn 1 hmn , (6)

so that
p

2g gmn � g̃mn � hmn 2 h̃mn 1 · · · , (7)

where

h̃mn � hmn 2
1
2hmnha

a . (8)

In harmonic gauge, ≠mg̃mn � 0 (i.e., ≠mh̃ mn � 0), the
classical linearized Einstein equation reads

�h̃c
mn�x� � 216pGTmn�x� , (9)
where the superscript c denotes the classical contribution.
Fourier transforming to momentum space results in

h̃c
mn�p� � 216pGD4�p�Tmn�p� , (10)

where D4�p� � 21�p2 is the four-dimensional massless
scalar propagator.

Incorporating one-loop corrections, the quantum cor-
rected metric becomes

h̃c
mn � h̃c

mn 1 h̃q
mn , (11)

where the quantum correction h̃
mn
q is given in momentum

space by

h̃ mn
q �p� � Dmnab�p�Pabgd�p�h̃ gd

c �p� . (12)

Dmnab is the graviton propagator,

Dmnab�p� �
1
2

D4�p� �hmahnb 1 hmbhna

2 hmnhab 1 · · ·� , (13)

and Pabgd is the one-loop graviton self-energy, which by
symmetry and Lorentz invariance must be of the general
form
Pabgd�p� � p4�P1�p2�habhgd 1 P2�p2� �haghbd 1 hadhbg� 1 P3�p2� �habp̂gp̂d 1 hgdp̂ap̂b�
1 P4�p2� �hagp̂bp̂d 1 hadp̂bp̂g 1 hbgp̂ap̂d 1 hbdp̂ap̂g� 1 P5�p2�p̂ap̂bp̂gp̂d� . (14)
The ellipses in (13) refer to gauge dependent terms in
the propagator which make no contribution if coupled to
conserved sources. Combining (12), (13), and (14), one
obtains the quantum corrected metric in the form

hq
mn�p� � 2p2�2P2�p�da

mdb
n 1 P1�p�hmnhab

1 ���P3�p� 1 · · · ���p̂mp̂nhab�h̃c
ab ,

(15)

where nonphysical gauge-dependent terms have again been
dropped. Finally, combining both classical and one-loop
quantum results at the linearized level yields

hmn�p� � 216pGD4�p�
∑
Tmn�p� 2

1
2

hmnTa
a�p�

∏

2 16pG�2P2�p�Tmn�p�
1 P1�p�hmnTa

a�p�� . (16)

Note that we have ignored the gauge-dependent term in
hmn proportional to p̂mp̂n . It makes no contribution when
hmn is attached to a conserved source Tmn satisfying
pmTmn � pnTmn � 0.

The actual form of the one-loop Pi’s depend on the
theory at hand. However for any massless theory in four-
dimensions, after cancelling the infinities with the appro-
priate counterterms, the finite remainder must necessarily
have the form

Pi�p� � 32pG

µ
ai ln

p2

m2 1 bi

∂
, (17)
where ai and bi , �i � 1, 2, 3, 4, 5�, are numerical coeffi-
cients and m is an arbitrary subtraction constant having
the dimensions of mass. In order to make connection
with the Newtonian potential, we Fourier transform (16)
back to coordinate space. For the static potential we
obtain the expected 1�r behavior at the classical level,
while the quantum term generates the claimed 1�r3 cor-
rection. In addition, the constant parts in (17) give rise to a
regulator-dependent d3�r� contact interaction. However
we have no real expectation that this one-loop perturbative
result remains valid when continued down to zero size.
Moreover, possible r23 lnmr terms come only from the
p̂mp̂n terms in (15) and hence drop out. For a point source,
T00�x� � md3�r�, we obtain to this order

g00 � 2

µ
1 2

2Gm
r

2
2aG2m

r3

∂
,

gij �

µ
1 1

2Gm
r

1
2bG2m

r3

∂
dij ,

(18)

where, in agreement with [2], a � 4 3 32p�a1 1 2a2�
and b � 24 3 32pa1. This yields the potential given in
(1). Explicit calculations of the self-energy (17) for spin
1 [3], spin 1�2 (two-component fermions) [4], and (real
conformally coupled) spin 0 [5] yield

ai�s � 1� � 4ai�s � 1�2� � 12ai�s � 0�

�
1

120�4p�2 �22, 3, 2, 23, 4� . (19)
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(Note that a symmetry factor of 1�2 was omitted in
Ref. [3]; this was subsequently corrected in Ref. [5].)
Note that all spins contribute with the same sign as they
must by general positivity arguments on the self-energy
[4]. Thus

a � 2b �
1

45p
�12N1 1 3N1�2 1 N0� �

2N2

3p
, (20)

as quoted in the introductory paragraph above.
This a coefficient also determines that part of the Weyl

anomaly [18,19] involving the square of the Weyl tensor
[20,21]:

gmn�Tmn� � b

µ
F 1

2
3

�R

∂
1 b0G , (21)

where

F � CmnrsCmnrs

� RmnrsRmnrs 2 2RmnRmn 1 R2,

G � �Rmnrs � Rmnrs
(22)

� RmnrsRmnrs 2 4RmnRmn 1
1
3

R2,

and where b and b0 are constants

b �
1

120�4p�2 �12N1 1 3N1�2 1 N0� ,

b0 � 2
1

720�4p�2 �124N1 1 11N1�2 1 2N0� .

(23)

Note that for the N � 4 SCFT, the coefficient of the
�Riemann�2 term, b 1 b0, vanishes [21]. The same result
is obtained if one calculates the holographic Weyl anom-
aly using the AdS�CFT correspondence [22]. Thus b �
3a�128p � c��4p�2, where the c is the central charge
given in the normalization of [8]. For the central charge,
one obtains c � pL3�8G5 [22], so that

Ga �
GL3

3G5
�

2L2

3
, (24)

where the second equality makes use of the brane-world
relation G � 2G5�L. Although we have focused on the
N � 4 SCFT to relate the coefficient appearing in New-
ton’s law to the central charge, the result (24) is universal,
being independent of which particular CFT appears in the
AdS�CFT correspondence, which is just as well since the
Randall-Sundrum coefficient does not depend on the de-
tails of the fields propagating on the brane.

We now turn to this brane world, where the five-
dimensional action has the form [14]

S �
Z

d5x
p

2g�5� �M3R�5� 2 L�

1
Z

d4x
p

2g�4� Lbrane . (25)

Here M is the five-dimensional Planck mass, M3 �
1��16pG5�, and L is the cosmological constant in the
2054
bulk. Small fluctuations of the metric on the brane may
be represented by [9,14]

ds2 � e22jyj�L�hmn 1 hmn�x, y��dxmdxn 1 dy2,
(26)

where L is the “radius” of AdS,

R
�5�
MNPQ � 2

1
L2 �g�5�

MPg
�5�
NQ 2 g

�5�
MQg

�5�
NP� , (27)

and is related to L by L � 212M3�L2. The brane-world
geometry has been chosen such that xm are coordinates
along the 3-brane, while y is the coordinate perpendicular
to the brane (which sits at y � 0).

Both brane and bulk quantities are contained in the lin-
earized metric hmn�x, y�. However, for comparison with
the CFT on the brane, we are concerned only with the for-
mer. Hence we consider a matter source on the brane and
examine hmn�x� � hmn�x, y � 0�. For this case, the re-
sults of [9,17] indicate

hmn�p� � 2
2

LM3 D4�p�
∑
Tmn�p� 2

1
2

hmnTa
a�p�

∏

2
1

M3 DKK �p�
∑
Tmn�p� 2

1
3

hmnTa
a�p�

∏
.

(28)

This expression has a clear physical meaning; D4�p�, the
four-dimensional massless propagator, corresponds to the
zero-mode graviton localized on the brane, while

DKK �p� � 2
1
p

K0�pL�
K1�pL�

(29)

is the propagator for the continuum Kaluza-Klein graviton
modes. Comparing the first term of (28) to (16), we obtain
the relation between four- and five-dimensional Newton’s
constants, G � 2G5�L � 1��8pLM3� given above. Note
that in the above we have taken the brane to be at the end
of a single patch of AdS5, as was done in [8,9]. This cor-
responds to the case at hand, since the AdS�CFT relations
we have employed above pertain to a single copy of AdS5.

The continuum graviton modes give rise to corrections
to the Newtonian potential. At large distances, correspond-
ing to pL ø 1, a small argument expansion for Bessel
functions yields

DKK �p� �
L
2

µ
ln

p2L2

4
1 2g

∂
1 O �p2� (30)

and, just as in (17), is the source of the 1�r3 correction to
the Newtonian potential. For a static gravitational source
of mass m on the brane, T00�p� � 2pd�p0�m, evaluating
the Fourier transform for r ¿ L yields the linearized met-
ric [16]

h00 �
2Gm

r

µ
1 1

2L2

3r2 1 · · ·

∂
,

hij �
2Gm

r

µ
1 1

L2

3r2 1 · · ·

∂
dij ,

(31)
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from which one may read off the Newtonian potential (5).
Moreover, all the metric components in (31) agree with

those of (18) and not merely the g00 component. In mo-
mentum space, this may be traced to the behavior of hmn

in the two pictures, namely (16) and (28). In (28) the
factor of 21�3 in the nonleading term, as compared with
factor 21�2 in the leading term, is attributable to the fact
that the Kaluza-Klein gravitons are massive. Whereas in
(16), it is because the CFT requires loop corrections with
P2�p� � 2

3
2P1�p�, which is in fact satisfied, as far as

the lnp2 term is concerned, since a2 � 2
3
2a1.

We have thus demonstrated that the 1�r3 corrections to
Newton’s law are identical between the Maldacena and
Randall-Sundrum pictures. This was examined in the con-
text of a single CFT corresponding to a one-sided brane
world scenario. Had we chosen instead to take the brane-
world to be sitting between two patches AdS5 (one on
either side), as was the case considered in [10,14], we
would have obtained a factor of 2 in the relation between
Newton’s constants, with a corresponding factor in the
propagator, (28). While this would ensure the correct
four-dimensional behavior of gravity, given in (31), the
two-sided brane-world relation G � G5�L will modify the
comparison with the one-loop CFT result, (24). To com-
pensate for this mismatch, one may assume that the two-
sided brane world is dual to two copies of the CFT coupled
to gravity, as is implicit in [10]. This leads to the natural
picture that a one-sided brane corresponds to a single CFT
while a two-sided brane corresponds to two CFTs.

An intriguing feature of this comparison of the gravita-
tional potential in both pictures is a highlighting of the
classical /quantum nature of this duality, as seen in the
relation

P2�p� 1 O �G2� �
L
4

DKK �p� . (32)

The propagator for the continuum graviton modes in the
Randall-Sundrum picture thus incorporates all quantum
effects of matter on the brane. It may be worthwhile
to examine this relation at the two-loop or higher level.
Nevertheless, this agreement at one loop lends strong sup-
port to the conjectured duality between the two pictures.
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