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Imaging the Phase of an Evolving Bose-Einstein Condensate Wave Function
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We demonstrate a spatially resolved autocorrelation measurement with a Bose-Einstein condensate
and measure the evolution of the spatial profile of its quantum mechanical phase. Upon release of the
condensate from the magnetic trap, its phase develops a form that we measure to be quadratic in the
spatial coordinate. Our experiments also reveal the effects of the repulsive interaction between two
overlapping condensate wave packets and we measure the small momentum they impart to each other.

PACS numbers: 03.75.Fi, 32.80.Qk, 39.20.+q
A trapped Bose-Einstein condensate (BEC) [1] has
unique value as a source for atom lasers [2] and matter-
wave interferometry [3] because its atoms occupy the
same quantum state, with uniform spatial phase. However,
when released from the trapping potential, a BEC with
repulsive atom-atom interactions expands, developing
a nonuniform phase profile. Understanding this phase
evolution will be important for applications of coherent
matter waves. We have developed a new interferometric
technique using spatially resolved autocorrelation to mea-
sure the functional form and time evolution of the phase
of a BEC wave packet expanding under the influence of
its mean-field repulsion.

In 1997, the coherence of weakly interacting BECs was
demonstrated by releasing two spatially separated conden-
sates and observing their interference [4]. Subsequent ex-
periments have further investigated condensate coherence
properties. One [5] used velocity-resolved Bragg diffrac-
tion [6] to probe the momentum spectrum of trapped and
released BECs. A complementary experiment [7] that used
matter-wave interferometry can be interpreted as a mea-
surement of the spatial correlation function, whose Fourier
transform is the momentum spectrum. These experiments
showed that a trapped condensate has a uniform phase,
and a released condensate develops a nonuniform phase
profile. (Recently the influence of nonzero temperature on
coherence properties was also investigated [8].) The ex-
periments reported in this Letter combine spatial resolution
and interferometry to measure the functional form of the
time-dependent phase profile of a released condensate. We
also make the first measurement of the velocity imparted
to two equal BEC wave packets from their mutual mean-
field repulsion [9].

We perform our experiments with a condensate of
1.8�4� 3 106 [10] sodium atoms in the 3S1�2, F � 1,
mF � 21 state. The sample has no discernible non-
condensed (i.e., thermal) component. The condensate is
prepared following the method of Ref. [6] and is held in a
magnetic trap with trapping frequencies vx �

p
2 vy �

2vz � 2p 3 27 Hz. Using a scattering length of a �
0031-9007�00�85(10)�2040(4)$15.00
2.8 nm, the calculated Thomas-Fermi diameters [11] are
47, 66, and 94 mm, respectively.

We release the BEC from the magnetic trap and it ex-
pands, driven mostly by the mean-field repulsion of the
atoms. This expansion implies the development of a non-
uniform spatial phase profile (recall that the velocity field
is proportional to the gradient of the quantum phase). Af-
ter an expansion time T0, we probe the phase profile with
matter-wave Bragg interferometry [12–14]. Our interfer-
ometer splits the BEC into two wave packets and recom-
bines them with a chosen overlap, producing interference
fringes, which we measure with absorption imaging [15].
From the dependence of the fringe spacing on the overlap,
we extract the phase profile of the wave packets.

Our atom interferometer [14] consists of three optically
induced Bragg-diffraction pulses applied successively in
time (Fig. 1). Each pulse consists of two counterpropa-
gating laser beams whose frequencies differ by 100 kHz.
They are detuned by about 22 GHz from atomic reso-
nance (l � 2p�k � 589 nm) so that spontaneous emis-
sion is negligible. The first pulse has a duration of 6 ms

FIG. 1. Space-time diagram of the experiment. Three optically
induced Bragg-diffraction pulses form the interferometer. The
condensate is released for a time T0 before the first Bragg pulse.
The centers of cA and cB are separated by dx at the time of
the third Bragg pulse, which splits them into cA1, cB1, and cA2,
cB2. Before imaging the atoms, we allow the output ports to
separate for a time T3 � 2 ms. The image shows the output
ports when T0 � 3 ms, T1 � 1 ms, and T2 � 1.3 ms.
© 2000 The American Physical Society
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and intensity sufficient to provide a p�2 pulse, which co-
herently splits the BEC into two wave packets, cA and cB.
The wave packets have about the same number of atoms
and differ only in their momenta: p � 0 and p � 2h̄k.
At a time T1 � 1 ms after the first Bragg pulse, the two
wave packets are completely separated and a second Bragg
pulse (a p pulse) of 12 ms duration transfers cB to a state
with p � 0 and cA to p � 2h̄k [16]. After a variable
time T2 the wave packets partially overlap again and we
apply a third pulse, of 6 ms duration (a p�2 pulse). This
last pulse splits each wave packet into the two momentum
states. The interference of the overlapping wave packets in
each of the two momentum states allows the determination
of the local phase difference between them. By changing
the time T2 we vary dx � xA 2 xB, the separation of cA

and cB at the time of the final Bragg pulse. The set of
data at different dx constitutes a new type of spatial au-
tocorrelation measurement that is similar to the “FROG”
technique [17] used to measure the complete electric field
of ultrafast laser pulses. From these measurements we ob-
tain the phase profile of the wave packets in the x direction.

Figures 2a–2e shows one interferometer output port
for different dx (different T2) after an expansion time
T0 � 4 ms. In general, we observe straight, evenly spaced
fringes (although for small T0 and T2 the fringes may
be somewhat curved). There is a value of dx � x0 fi 0
where we observe no fringes (Fig. 2c) and the fringe
spacing decreases as jdx 2 x0j increases. Figure 2f, a cut
through Fig. 2d, shows the high-contrast fringes [18]. Our
data analysis uses the average fringe period d, obtained
from plots like Fig. 2f.

The fringes come from two different effects: the inter-
ference of two wave packets with quadratic phase profile,
and a relative velocity between the wave packets’ cen-
ters. The data can be understood by calculating the fringe
spacing along x at output port 1 [19]. We assume that
the phase f of the wave function feif can be written as
f � a

2 x2 1 bx. The equal spacing of the fringes im-

FIG. 2. (a)– (e) One of the two output ports of the interfer-
ometer with T0 � 4 ms and dx as indicated. (f ) A plot of the
density along the x direction of (d).
plies, as predicted in the Thomas-Fermi limit [20], that
f has no significant higher-order terms [21]. The curva-
ture coefficient a describes the mean-field expansion of
the wave packets and b describes a relative repulsion ve-
locity. The velocity arises because the wave packets expe-
rience a repulsive push as they first separate and again as
they recombine. The density at port 1 (see Fig. 1) just af-
ter the final interferometer pulse is the interference pattern
jcA1 1 cB1j

2 of the wave packets cA1 and cB1:

j f�x 2 dx�ei��a�2� �x2dx�22b�x2dx�� 1 f�x�ei��a�2�x21bx�j2,
(1)

where we assume that the amplitudes and curvatures of
the wave packets are equal and their velocities have equal
magnitude and opposite direction. The cross term of (1) is

2f�x 2 dx�f�x� cos

∑µ
adx 1

Mdy

h̄

∂
x 1 C

∏
, (2)

where M is the sodium mass, Mdy�h̄ � 2b, and C is
independent of x [22]. dy � yB 2 yA is the relative re-
pulsion velocity between the wave packets cA1 and cB1.
Expression (2) predicts fringes with spatial frequency,

k � adx 1
Mdy

h̄
, (3)

where jkj � 2p�d. When there are no fringes, k � 0 and
the wave packet separation dx � x0 � 2Mdy�ah̄.

Figure 3 plots the measured k vs dx [23] for T0 �
1 and 4 ms. The data are well fit by a straight line as
expected from Eq. (3) in the approximation that a and
dy are independent of dx. The slopes of the lines are the
phase curvatures a, and the k intercepts give the relative
velocities dy.

We checked the validity of the data analysis procedure
by analyzing data simulated with a 1D Gross-Pitaevskii
(GP) treatment. Despite variations of dy and a with dx
(due to their continued evolution during the variable time
T2), we find that k is still linear in dx. The slopes and
intercepts in general are averages over the range of dx
used in the experiment.

The interference fringes used to determine a and dy

are created at the time of the final interferometer pulse.
Because the two outputs overlap at that moment, we wait
a time T3 for them to separate before imaging. During

-0.8
-0.6
-0.4
-0.2

0.2
0.4
0.6
0.8

-25 -20 -15 -10 -5 5 10 15 20 25

κ
[

m
-1

]

δx  [µm]

µ

FIG. 3. Plot of the spatial fringe frequency k versus dx for
T0 � 1 ms (filled circles) and 4 ms (open squares). The solid
and dashed lines are linear fits to the data.
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this time, the wave packets continue to expand. The 1D
simulations show that the fringe spacings and the wave
packets expand in the same proportion. We correct k

(by typically 15%) for this, using the calculated expansion
from a 3D solution of the GP equation described below.

The different slopes and intercepts of the two lines in
Fig. 3 show that the curvature a and relative velocity dy of
the wave packets depend on the release time T0 before the
first interferometer pulse. Figure 4 plots the dependence
of a and dy on various release times T0. The condensate
initially has a uniform phase so that immediately after its
release from the trap a � 0. We nevertheless measure a
nonzero a for T0 � 0 ms because the BEC expands dur-
ing T1 and T2. As a function of time, a behaves as �D�D
where D is the wave packet diameter and �D is its rate of
change [20]. At early times when the mean-field energy
is being converted to kinetic energy, �D increases rapidly,
increasing a. At late times, after the mean-field energy has
been converted, D increases while �D is nearly constant,
decreasing a.

We predict the time evolution of a using the Lagrangian
variational method (LVM) [24]. The LVM uses trial wave
functions with time-dependent parameters to provide ap-
proximate solutions of the 3D time-dependent GP equa-
tion. In the model, the effect of the interferometer pulses is
to replace the original wave packet with a superposition of
wave packets having different momenta; e.g., the action of
our first interferometer pulse is c0 ! �c0 1 ei2kxc0��

p
2.

We use Gaussian trial wave functions in the LVM to calcu-
late the phase curvature a at the time of the last interfer-
ometer pulse. For simplicity, the interaction between the
wave packets is neglected. This result, with T1 � T2, is
the solid line of Fig. 4a.

We use energy conservation to calculate the relative
repulsion velocity dy between cA1 and cB1 because we ne-
glect wave packet interactions in the LVM. In the Thomas-
Fermi approximation, we can calculate the amount of
energy available for repulsion when T0 � 0. A trapped
condensate has 5

7m average total energy per particle,
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FIG. 4. (a) Plot of the phase curvature a versus the initial ex-
pansion time T0 showing the phase evolution from mean-field
expansion. The solid line is a calculation using the Lagrangian
variational method (LVM). (b) Plot of the relative repulsion
velocity dy versus T0. The solid curve is the calculated maxi-
mum repulsion velocity (when dx � 0) and the dashed curve is
the repulsion velocity averaged over the range of dx used in the
experiment.
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where m is the chemical potential [11]. After release from
the trap, it has 2

7m average mean-field energy per particle.
Applying a p�2 Bragg pulse to the BEC causes a density
corrugation, which increases the mean-field energy to
3
7m per particle. In the approximation that the wave
packets do not deform as they separate and recombine,
one can show that 1

3 of the total mean-field energy goes
into expansion of the wave packets, and 2

3 is available for
kinetic energy of center-of-mass motion. Therefore 2

7m of
mean-field energy per particle is available for repulsion.
The corresponding repulsion velocity is only about 1022

of a photon recoil velocity. The repulsion energy and dy

decrease for larger T0 because both are inversely pro-
portional to the condensate volume, which we calculate
with the LVM. The two curves shown in Fig. 4b are
the calculated dy when dx � 0 (solid curve) and dy

averaged over the different dx used in the experiment
(dashed curve). The 1D GP simulations suggest that for
small T0, the results of the experiment should be closer
to the solid curve, and for large T0, closer to the dashed
curve. The data are consistent with this trend.

In a related set of experiments we performed interfer-
ometry in the trap. This differs from the experiments on a
released BEC because there is no expansion before the first
interferometer pulse [25] and the magnetic trap changes
the relative velocity of the wave packets between the in-
terferometer pulses (Fig. 5a). To better reveal the velocity
differences, we choose T1 � T2 � T to suppress fringes
arising from the phase curvature. As with the released
BEC measurements, we observe equally spaced fringes at
the output of the interferometer, although the fringes are
almost entirely due to a relative velocity y between the
wave packets cA1 and cB1 at the time of the third inter-
ferometer pulse. We obtain y from the fringe periodicity
after a small correction for residual phase curvature [26].

Two effects contribute to y: the mutual repulsion be-
tween the wave packets cA and cB and the different action
of the trapping potential on the two wave packets in the in-
terferometer. The latter effect occurs because after the first
Bragg pulse, cA remains at the minimum of the magnetic
potential while cB is displaced. Wave packet cB therefore

FIG. 5. (a) Schematic representation of the interferometer in
the trap, with the principle difference from Fig. 1 being the
curved arrows indicating the acceleration of the wave packets.
(b) The relative velocity y between the two trapped wave packets
versus the interferometer time T . The solid line is a fit.
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spends more time away from the center of the trap and ex-
periences more acceleration than cA.

Following the last Bragg pulse, cA1 and cB1 have
a velocity difference which for our parameters can
be approximated by y � 2

2 h̄k
M sin2�vxT � 1 dy [27].

Figure 5b plots y versus T , and the curve is a fit
to the above expression. We obtain the trap frequency
vx�2p � 26.7�15� Hz, in excellent agreement with an in-
dependent measurement. We also obtain the relative veloc-
ity from the mean-field repulsion dy � 0.49�12� mm�s,
which we expect to be somewhat larger than for the
released measurements because the wave packets contract,
producing a larger mean field.

In conclusion, we demonstrate an autocorrelating
matter-wave interferometer and use it to study the evolu-
tion of a BEC phase profile by analyzing spatial images
of interference patterns. We study how the phase curva-
ture of the condensate develops in time and measure the
repulsion velocity between two BEC wave packets. Our
interferometric method should be useful for characterizing
other interesting condensate phase profiles. For example,
it can be applied to detect excitations of a BEC with
characteristic phase patterns, such as vortices and solitons
[14,28–31]. The method should be useful for further
studies of the interaction of coherent wave packets and to
study the coherence of atom lasers.
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