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We argue that energy minimization can explain the pattern of cell movements in the morphogenetic
process known as convergent extension provided that the cell-cell adhesive energy has a certain type of
anisotropy, which we describe. This single simple property suffices to cause the cell elongation, cell
alignment, and lengthening of a cellular array that characterize convergent extension. We show that
the final aspect ratio of the array of cells depends on the anisotropy and is independent of the initial
configuration and of the degree of cell elongation.

PACS numbers: 87.18.Ed, 87.18.Hf, 87.18.La
Developing animal embryos greatly change form (mor-
phogenesis) [1]. Some changes involve the coherent mo-
tion of groups of cells over distances large compared to
cell dimensions. A type of cell rearrangement, termed
“convergent extension” is seen in the development of axial
structures in a number of, though not all, animal groups.
Examples include germ band extension in fruit flies [1],
archenteron formation in sea urchins [1], and pronephric
duct extension in salamanders [2]. Convergent extension
of the axial mesoderm of the frog Xenopus laevis has been
particularly well characterized by experiments (see [3] for
a brief review and extensive references).

In convergent extension an active group of cells under-
goes a threefold process. The individual cells, originally
roughly isodiametric (Fig. 1a), elongate and their axes of
elongation become aligned. If these were the only mo-
tions the final configuration would be as in Fig. 1b. But at
the same time, though on a somewhat slower time scale,
the cells intercalate between each other. The intercala-
tion is in the direction of alignment so that the number
of cells in that direction decreases while the number of
cells in directions perpendicular to the alignment increases,
producing a final configuration as in Fig. 1c. The elon-
gation increases the overall length of the group of cells
in the direction of alignment and decreases the length in
orthogonal directions (since the volume stays roughly con-
stant). Intercalation does the reverse but dominates, so that
the axis of net extension of the group of cells is at right
angles to the axis of individual cell elongation. Here, we
argue that these important aspects of convergent extension
result from a tendency of the active cells to minimize their
total energy, provided that they interact with a nonuniform
surface (adhesive) energy satisfying certain conditions. We
also develop a mean field theory of this process.

Steinberg [4] suggested that differential cell adhesion
and cell motility lead to energy minimization and can ac-
count for cell sorting patterns in mixtures of two or more
cell types (see [5] for a review and extensive references
to the literature). Goel and Leith [6] have considered cell
sorting for a simple geometrical model in the presence of
anisotropic surface adhesion between cells of fixed shape.
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Many computer simulations model cell sorting, driven by
energy minimization [7,8]. Drasdo, Kree, and McCaskill
[9] have simulated cell sorting with anisotropic surface ad-
hesion but not the convergent extension of a homogeneous
group of cells. We do not model here the dynamics of
convergent extension. We assume, as in [4] and [6], that
cell motility will allow the cells to explore possible con-
figurations and that strong dissipation will lead towards the
configuration of minimum energy.

In the embryo, convergent extension sometimes takes
place in an asymmetric environment where the inactive
cells bounding the active region are not the same on all
sides. In this case, the boundaries which channel the active
cells determine the extension, and its orientation, rather
than intrinsic collective properties of the group of active
cells. Under these experimental circumstances the bound-
aries strongly influence active cell movements. Indeed, in
the physical model of Weliky et al. [10], convergent exten-
sion results only if active cells at the boundaries parallel to
the elongation behave differently from those at the bound-
aries perpendicular to the elongation.

A subsequent and elegant experiment by Shih and Keller
[11], however, strongly suggests that, in addition, the ac-
tive cells have an intrinsic collective mechanism driving
their convergent extension. In these experiments a layer
(essentially a monolayer) of active cells was excised from
a frog embryo, at a stage before convergent extension
had begun, and grown on a uniform surface in a culture
medium. Subsequently the layer showed strong conver-
gent extension in the plane of the substrate, and this in the
absence of any plausible lateral anisotropy of the substrate
or the culture medium. This behavior appears to be an
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FIG. 1. Intercalation. Isodiametric cells (a) elongate and align
(b) while simultaneously intercalating (c) so that an array of
cells extends at right angles to the direction of cell elongation.
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example of “broken symmetry” so well known in con-
densed matter physics, and asks for an explanation based
on collective behavior induced by cell-cell interactions.

To explain this behavior by energy minimization we as-
sume that cell-cell interactions take place through surface
adhesion characterized by an energy per unit contact area.
We assume that the cell rearrangements take place with
negligible cell division, consistent with the later stages of
the above experiment. The literature does not identify the
trigger for cell elongation and our model does not provide
one. Our main assumption is that the adhesive energy of
the contact surface between two cells depends on its ori-
entation relative to the axes of elongation of the two cells.
For example, the surface density of adhesive binding sites
might differ on the long and short sides of a cell or the type
of adhesion molecules might differ. We can find in the lit-
erature no compelling evidence either for or against this
assumption. We argue here that a specific form of this as-
sumption is a sufficient cause of the elongation, alignment,
and lengthening characteristic of convergent extension.

Our model is two dimensional since convergent exten-
sion takes place in the plane of the substrate. Experi-
ments show that each cell’s volume and height remain
nearly equal and constant so, in our model, we consider an
array of elongated two-dimensional cells, whose areas are
all equal and fixed. We assume the array is closely packed
(no internal holes) as is observed, and that it contains a
large fixed number N of cells. We first want to find the
conditions which favor alignment. Figure 2a is a cartoon
of a few elongated cells in the interior of such a large or-
dered array of cells and Fig. 2b is for a disordered array.
Suppose that we can roughly distinguish, for each cell, two
long sides (parallel to the axis of elongation) and two short
sides (perpendicular). Figure 2a shows that in the ordered
array the cell-cell contact surfaces are, for the most part,
either roughly parallel to the common axes of alignment or
roughly perpendicular to the axes. We term these long-long
(ll) or short-short (ss) contacts since they occur, primarily,
at contacts between a pair of long sides or a pair of short
sides. The disordered array of Fig. 2b has many contact
surfaces at intermediate angles to the now different axes of
adjacent cells. We term these long-short (ls) contacts since
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FIG. 2. Cell alignment. For an ordered array (a) most cell
attachments are either end to end or side to side while a disor-
dered array (b) exhibits significant binding between poles and
lateral surfaces.
they tend to connect a long side of one cell to a short side
of a neighbor. If the energy density (per unit length) of the
ls contacts is enough larger than those of ll and ss contacts
then we expect that the ordered array will have a lower en-
ergy per cell. More quantitatively, let l and s be the average
long and short side lengths of each cell, which, for the mo-
ment, we take as fixed. Suppose that all cell-cell contacts
are either ll, ss, or ls and that the total cell-cell contact
lengths of each type in the array are Lll , Lss, and Lls. Let
Sl be the contact length between long cell sides and the
surrounding medium at the array boundary. The N cells
have a total long side length 2Nl. The ll contacts account
for 2Lll of this since each such contact involves the long
sides of two cells. The ls contacts account for Lls and the
surface contacts for Sl . Hence 2lN � 2Lll 1 Lls 1 Sl .
Similarly, for the short sides, 2sN � 2Lss 1 Lls 1 Ss.
We assume that three energy densities (Jll , Jss, and Jls)
characterize the cell-cell contacts and that the cell-medium
contacts have zero adhesive energy. The array energy is
then E � LllJll 1 LssJss 1 LlsJls. Eliminating Lll and
Lss between the three equations gives

E � Lls

µ
Jls 2

Jll 1 Jss

2

∂
1 N�lJll 1 sJss�

2
SlJll 1 SsJss

2
. (1)

In a closely packed compact array of N cells, the boundary
contact lengths, S, will be proportional to

p
N while the

cell-cell contact lengths L will be proportional to N so
the first two terms in Eq. (1) will, to first approximation,
dominate for large N . The second term is fixed so that
the energy is an increasing function of Lls if the ordering
condition,

gls � Jls 2 �Jll 1 Jss��2 . 0 , (2)

is satisfied. In this event ordered arrays (Lls � 0) will
have lower energies than disordered (Lls . 0) arrays, in
the limit of large N . Note that condition (2) is that the ls
surface tension gls be positive.

The above argument is exact if the cells are assumed
(unrealistically) to be identical rectangles arranged in arbi-
trary infinite tesselations of the plane and is similar to that
used in [6] for the cell sorting problem. For realistic cells
it is a crude but plausible representation.

If a variation in the density of the binding sites on the
cell surface causes the variation in adhesive energy and if
we make the natural assumption that the density of adhe-
sive bonds is proportional to the product of the density of
binding sites on the cell surfaces in contact, then we would
have in the above model, Jll � 2jljl , Jss � 2jsjs, and
Jls � 2jljs, where we choose the sign to make all J , 0
when all j . 0. This choice satisfies the ordering con-
dition Eq. (2) whenever jl and js are positive and are
not equal.
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In addition to Eq. (2) let us suppose that the ll energy
density is lower than the ss energy density:

Jll , Jss , 0 �or jl . js . 0� . (3)

Now increasing the cell long side length l and decreasing
the short side length s reduces the energy, Eq. (1), causing,
or at least favoring, elongation of the cells. At equilibrium
these surface effects will presumably balance internal cel-
lular forces opposing further elongation.

We now consider the effect of the boundary on a finite
array of N cells. Figure 1 shows, as an example, arrays of
twelve elongated cells. In Fig. 1b the array extends in the
direction of cell elongation and the boundary contact is pri-
marily at the long sides of cells, so Sl . Ss. In Fig. 1c the
array extends perpendicular to the cell elongation and the
boundary contact is mostly at the short sides, so Sl , Ss.
If Jll , Jss , 0 then Eq. (1) shows that the configuration
of Fig. 1c has the lower energy.

For a rectangular array of rectangular cells a direct cal-
culation of the array dimensions D, which minimize the
energy, gives D��Dk � Jll�Jss . 1, where D� and Dk

are measured along the directions perpendicular and par-
allel to the cell elongation. We emphasize that this result
and also the ordering condition Eq. (2) are independent
of the assumption that l . s. All of the arguments go
through if we interpret the subscripts l and s as simply
referring to the cell sides with the lower and the higher
adhesive energies. Convergent extension (array extension
perpendicular to cell elongation), however, occurs only
if l . s.

We can make the above arguments concerning surface
effects somewhat more realistic and quantitative by the fol-
lowing mean field type of modeling. We assume that we
have a large array of N elongated and aligned cells. The
total energy of the array is the bulk energy due to cell-
cell interactions plus the surface correction for the absence
of cells outside the boundary. The bulk energy is propor-
tional to N , or equivalently, the array area A, so we write
it as lA, where l is the (negative) bulk energy per unit
area in the aligned array. To model the anisotropic cell-
cell interaction we assume that J depends on the angle
between the direction of alignment, specified by the unit
vector â, and the unit vector n̂ normal to the contact seg-
ment between the cells (see Fig. 3a). More explicitly, we
assume that J�n̂ ? â� is negative, an even function (since
â, 2â and n̂, 2n̂ specify the same physical situations),
and is minimum at n̂ ? â � 0 (so that ll interactions have
the lowest energy). Figure 3b shows part of a finite array
of vertically aligned cells and their boundary with an exter-
nal medium with which we assume they have no adhesive
energy. To find the energy of the finite array we must sub-
tract from the bulk energy half the energy the boundary
cells would have had with cells external to the array had
the boundary been absent; half, since adhesive energy is
shared between two cells. So
2024
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FIG. 3. Anisotropic binding. We assume that the adhesive
energy at the point of contact between cells (a) depends on
�n̂ ? â�2 where n̂ is the local unit normal while â gives the
alignment, assumed common to all cells. At an interface with
uniformly inert surroundings (b), the missing adhesive energy
will vary with the orientation of the surface cells relative to
the boundary.

E � lA 2
1
2

I
J�n̂ ? â� dl , (4)

where the integral is taken around a closed boundary. We
want to minimize Eq. (4) over all boundaries enclosing
the same area A. Alternatively we can interpret l as a
Lagrange multiplier and find the extrema of Eq. (4) over
all closed curves at fixed l. To do this parametrize the
curves as r�u� with 0 # u # 1, and r�0� � r�1�. Then,
since dl � � �x2 1 �y2�1�2du (where �r � dr�du), while
�n̂ ? â� � �ay �x 2 ax �y��� �x2 1 �y2�1�2 and A �

R1
0 y �x du

we can write the energy as
R1

0 L �r, �r� du with
L �r, �r� � ly �x 2 J�n̂ ? â� � �x2 1 �y2�1�2�2. The ex-
tremal curves are solutions of the usual Euler-Lagrange
equations for L and are degenerate with respect to trans-
lations in the x-y plane. This degeneracy gives rise to two
first integrals and two constants of integration (which we
choose to be zero), which fix the position of the extremal
curve. The integrated equations have the form

2lr � âJ 0�n̂ ? â� 1 n̂�J�n̂ ? â� 2 �n̂ ? â�J 0�n̂ ? â�� ,

(5)

where J 0 is the derivative of J . The dot product of Eq. (5)
with r̂ gives the Wulff condition [12]. Equation (5) is two
coupled first order differential equations whose solutions
depend on the particular choice of the function J. We have
not been able to find complete analytic solutions for any
interesting choice of J but have found some properties of
the solutions. For the simple case of â � 0, or equivalently
J � const, the solution is a circle of radius J��2l�.

More generally, the turning points of any solution curve
occur when d�r ? r��du vanishes. Now
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l
d
du

�r ? r� � 2l��r ? r� � ��r ? â�J 0�n̂ ? â� , (6)

where we have used Eq. (5) and that �r ? n̂ � 0 for any
curve. Equation (6) allows two types of turning points:
(i) At �r ? â � 0, the boundary is perpendicular to the
alignment so that n̂ � 6â. Because J is even and J 0 is
odd, Eq. (5) allows perpendicularity only at the two points
r � 6âJ�1���2l�, on the line through the origin and par-
allel to â. (ii) At n̂ ? â � 0 where J 0 � 0, the boundary is
parallel to the alignment; Eq. (5) shows that 2lr � n̂J�0�,
thus turning points at 6J�0���2l� lie along a line through
the origin and perpendicular to â. If D� and Dk are the
distances between the turning points aligned, respectively,
perpendicular and parallel to â then the aspect ratio of the
boundary is

D��Dk � J�0��J�1� . (7)

If J�0� , J�1� , 0 then D��Dk . 1 and the elongation is
in the direction perpendicular to the alignment, as observed
in convergent extension. From Fig. 3a we see that J�0�
corresponds to our previous Jll while J�1� corresponds
to Jss.

We have also studied the minimization of the energy
functional Eq. (4) numerically for the case where J is cho-
sen to be a Gaussian function. We approximate the bound-
ary curve by a polygon of at least 100 sides and use an
iterative process that moves down the energy gradient. We
have started from many initial configurations, all of which
are closed polygons. The final boundary curve is always
the same and has the correct aspect ratio Eq. (7).

Thus, we can understand convergent extension as energy
minimization, provided the cell-cell adhesive energy has a
certain kind of anisotropy. This single simple property is
sufficient cause for the cell elongation, cell alignment, and
tissue lengthening that characterize convergent extension.
The anisotropy conditions, Eqs. (2) and (3), favor, respec-
tively, the elongation and the alignment of the cells. The
final aspect ratio of the cell array is given by Eq. (7) and is
independent of both the initial configuration and the degree
of cell elongation. Equation (3) also ensures that array ex-
tension is perpendicular to cell elongation.

We believe our arguments are plausible but not conclu-
sive. Our modeling neglects many degrees of freedom as-
sociated with cell shape and arrangement. Minimizing the
bulk and surface energies separately is accurate only for a
large array of cells. We do not see much possibility of sig-
nificant improvement by purely analytic methods. We have
initiated simulations of convergent extension, using the
Potts model and Metropolis dynamics methods of Refs. [7]
and [8], with anisotropic adhesive energies. Anisotropic
adhesive energies introduce technical difficulties because
the energy becomes nonlocal on the scale of the size of a
cell. This considerably increases the simulation time and
limits our preliminary results to arrays of 36 cells whereas
experimental samples usually contain 100 or more cells.
These simulations should still show if the configurations of
low energy show the predicted convergent extension. An
interesting and more difficult question concerns the simu-
lation dynamics. Will the cells move from an unextended
initial state to an extended final state in a sequence of mo-
tions similar to that seen in experiment? The answer to
this question may well depend on the particular simulation
dynamics used to model cell motility. On the experimental
side, experiments that probe the possible anisotropy of cell
adhesive energy would be useful, as would experiments
that show the final configuration is largely independent of
the initial configuration.
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