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Grover’s quantum search algorithm has recently been implemented without entanglement, by replacing
multiple particles with a single particle having exponentially many states. We recall that all physical
resources must be accounted for to quantify algorithm complexity, and that this scheme typically incurs
exponential costs in some other resource(s). In particular, we demonstrate that a recent experimental
realization requires exponentially increasing precision. There is, however, a quantum algorithm which
searches a “sophisticated” database (not unlike a Web search engine) with a single query, but which we
show does not require entanglement even for multiparticle implementations.

PACS numbers: 03.67.Lx
Quantum algorithms must exploit some physical re-
source unavailable to classical computers in order to solve
problems in fewer steps [1–5]. Entanglement, which
seems the “spookiest” [6] to many people, has been
argued to be the crucial quantum mechanical resource
[7]. This belief inspires, for example, the criticism
that NMR experiments performed to date [8] have not
actually realized quantum algorithms because at each
time step the state of the system can be described as a
probabilistic ensemble of unentangled quantum states [9].
Lloyd [10] and Ahn et al. [11] have recently suggested,
however, that entanglement is not necessary for Grover’s
quantum search algorithm [4]. In this Letter we clarify
the situation by demonstrating that, contrary to their
claims, the experimental realization of Ahn et al. [11]
requires an exponentially increasing amount of a re-
source—precision—replacing entanglement. But we do
not conclude from this that entanglement (or some re-
placement resource) is required. Rather, we make the new
and surprising observation that efficient quantum search
of a “sophisticated” database (not unlike a Web search
engine) requires no entanglement at any time step: a
quantum-over-classical reduction in the number of queries
is achieved using only interference, not entanglement,
within the usual model of quantum computation.

The problem which forms the context for our discussion
is database search–identifying a specific record in a large
database. Formally, we label the records �0, 1, . . . , N 2 1�,
where, for convenience when we write the numbers in
binary, we take N � 2n for n a positive integer. Grover
considered databases which, when queried about a specific
number, respond only that the guess is correct or not [4].
On a classical reversible computer we can implement a
query by a pair of registers �x, b�, where x is an n-bit
string representing the guess, and b is a single bit which
the database will use to respond to the query. If the guess
is correct, the database responds by adding 1 (mod2) to b;
if it is incorrect, it adds 0 to b. That is, the response of the
database is the operation: �x, b� ! ���x, b © fa�x����, where
0031-9007�00�85(9)�2014(4)$15.00
© denotes addition mod2 and fa�x� � 1 when x � a, and
0 otherwise. Thus if b changes, we know that the guess
is correct. Classically, it takes N 2 1 queries to solve this
problem with probability 1.

Quantum algorithms work by supposing that they will
be realized in a quantum system, such as those described
by Lloyd [10] and Ahn et al. [11], which can be in a
superposition of “classical” states. These states form
a basis for the Hilbert space whose elements represent
states of the quantum system. The simplest such system
is a qubit [12], which can be in a superposition of the
states of a classical bit, i.e., 0 and 1. More generally,
Grover’s algorithm works with quantum queries which
are linear combinations

P
cx,bjx, b�, where cx,b are

complex numbers satisfying
P

jcx,bj
2 � 1 and jx, b�

is Dirac notation [13] for the quantum state which
represents the classical state �x, b� of the two registers.
The operations in quantum algorithms are unitary trans-
formations, the quantum mechanical generalization of
reversible classical operations. Thus the operation of
the database that Grover considered is implemented on
superpositions of queries by a unitary transformation
( fa-controlled-NOT), which takes jx, b� to jx, b © fa�x��.
Figure 1 illustrates a quantum circuit implementation
[14] of Grover’s algorithm [4]. By using b

p

4

p
N c

quantum queries, it identifies the answer with proba-
bility close to 1: The final vectors for the N possible
answers a are nearly orthogonal.

This quantum circuit acts on an initial state c0 � j0� · · ·
j0� j0� � j0 . . . 0, 0�. The first set of gates transforms the
state to c1 �

1
p

2
�j0� 1 j1�� ≠ · · · ≠ 1

p
2

�j0� 1 j1�� ≠
1
p

2
�j0� 2 j1�� �

PN21
x�0 jx� �j0� 2 j1���

p
2N . Both of

these states, c0 and c1, are tensor products of the states
of the individual qubits, so they are unentangled [16].
This is no longer true for subsequent states of the system
(except when N � 2). The last qubit, however, is never
entangled with the others—after the first time step it
remains in state 1

p
2

�j0� 2 j1��. Lloyd’s observation [10],
which is exploited by Ahn et al. [11], is that the absence
© 2000 The American Physical Society
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FIG. 1. A (schematic) quantum circuit implementing Grover’s
algorithm. Each horizontal line represents a single qubit, which
is initialized (on the left) in state j0�. The portion of the circuit
enclosed in the grey square is repeated b

p

4

p
N c times and then

the top n qubits are measured. H is the Hadamard transforma-
tion � 1

1
1

21 ��
p

2, X is the Pauli matrix � 0
1

1
0 �, and the “gates”

acting on all n 1 1 qubits are fa- and f0-controlled-NOT trans-
formations, respectively. As was first noted by Brassard and
Høyer, and subsequently by Grover, the Hn≠ �≠I2� transforma-
tion conjugating the f0-controlled-NOT gate can be replaced by
almost any unitary transformation [15]. Our discussion is inde-
pendent of this choice.

of entanglement in the N � 2 case of Grover’s algorithm
(for which the guess register consists of a single qubit)
generalizes to arbitrary N if the guess register is realized
by one N state particle rather than by n qubits. In fact,
Jozsa and Ekert [7] made exactly this observation several
years ago: They wrote, “The state of n qubits is a 2n

dimensional space and can be isomorphically viewed
as the state space of a single particle with 2n levels.
Thus we simply view certain states of a single 2n level
particle as ‘entangled’ via their correspondence under a
chosen isomorphism between ≠nH2 and H2n (where
Hk denotes a Hilbert space of dimension k.).” So, despite
the implication of the Lloyd [10] and Ahn et al. [11]
papers, there is nothing special about Grover’s algorithm:
Reformulating any quantum algorithm this way, i.e.,
disregarding the tensor product structure of Hilbert space
implicit in the use of qubits, removes entanglement from
the system by definition. Nevertheless, one might hope
that if a quantum algorithm—such as Grover’s—can
be implemented naturally with a single particle, as
Lloyd suggests [10] and as Ahn et al. realized experi-
mentally with N Rydberg levels of a cesium atom [11],
there is some physical advantage to be gained.

But Jozsa and Ekert [7] continue, “However the physical
implementation of this correspondence appears always to
involve an exponential overhead in some physical resource
so that the isomorphism is not a valid correspondence for
considerations of complexity.”, again anticipating Lloyd’s
discussion [10]. Although their data indicate that increas-
ing N requires more repetitions of the experiment to ex-
tract the answer [11], Ahn et al. neglect the exponential
overhead required for measurement and for realization of
N 3 N unitary transformations: They claim that extrapo-
lation from their N � 8 experiments to N � 20 is straight-
forward and suggest that ultrafast shaped terahertz pulses
[17] might realize more general unitary transformations
than those used in their implementation of Grover’s algo-
rithm. But because the difference (detuning) between ad-
jacent Rydberg energy levels converges to 0 polynomially
in 1�N (for N labeling the energy levels) [13,17], both the
laser pulses and the final measurements must be specified
with exponentially increasing precision in n, the size of the
problem [18]. This should be contrasted with the standard
model for quantum computation using polylocal transfor-
mations implemented by polynomially many bounded size
gates on Hilbert spaces with a tensor product decomposi-
tion [19,20]; these require specification of only polynomi-
ally many nontrivial amplitudes with constant precision.
As Bernstein and Vazirani [2] and Shor [21] already em-
phasized in their original analyses of quantum models for
computing, all physical resources must be accounted for
to quantify algorithm complexity; it is a mistake to ignore
some because the requirements for them do not overwhelm
small N experiments.

Having identified an exponential cost associated with
the Ahn et al. realization [11] of Lloyd’s suggestion for
entanglement removal [10], we are now ready to demon-
strate that it is also a mistake to infer, as Lloyd’s pre-
sentation might lead one to [22], that quantum algorithms
require entanglement—or an exponential amount of some
resource replacing it— to improve on classical algorithms.
Rather than Grover’s “naive” database, let us consider a so-
phisticated database which, when queried about a specific
number, responds with information about how close the
guess is to the answer. This kind of response is more like
that returned by, for example, Web search engines, which
typically order pages by relevance [23]. A simple measure
of relevance comes from the vector space model of infor-
mation retrieval [24]: The records in the database and the
guess are represented by vectors; then (the cosine of) the
angle between a guess and any record measures their simi-
larity and can be computed from the dot product of their
vectors. In our setting the sophisticated database acts on a
query �x, b� by computing the dot product of the n dimen-
sional binary vectors x ? a and adding it to b (mod2). Thus
�x, b� ! ���x, b © ga�x����, where ga�x� � x ? a. Classi-
cally, n queries suffice to identify a with probability 1.

Quantum mechanically, an underappreciated algorithm
of Bernstein and Vazirani [2], rediscovered by Terhal
and Smolin [5], searches this sophisticated database
with only a single quantum query [25]. The operation
of the database is implemented by the unitary trans-
formation (ga-controlled-NOT) which takes jx, b� to
jx, b ≠ ga�x��. A quantum circuit for their algorithm
(slightly improved [14]) is shown in Fig. 2. The first
set of gates is the same as in Fig. 1, and takes c0 �
j0 . . . 0, 0� to c1 �

PN21
x�0 jx� �j0� 2 j1���

p
2N . After the

database responds to this quantum query, the state is c2 �PN21
x�0 �21�x?ajx� �j0� 2 j1���

p
2N . The final set of gates

outputs c3 � ja� ≠ 1
p

2
�j0� 2 j1��, whereupon measuring
2015
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FIG. 2. A (schematic) quantum circuit implementing Bernstein
and Vazirani’s algorithm. Each horizontal line again represents
a qubit, which is initialized (on the left) in state j0�. H and X are
the same as in Fig. 1 and the gate acting on all n 1 1 qubits is
the ga-controlled-NOT transformation of the sophisticated data-
base. The top n qubits are measured at the end of the circuit.

the first (n-qubit) register identifies a with probability 1
(the output states for different a’s are orthogonal). Com-
paring with Grover’s algorithm, we recognize that the last
qubit still remains unentangled with the first register, so
that we could again implement the latter with a single 2n

state particle and have no entanglement at any time step.
But this would be redundant: There is no entanglement
in Bernstein and Vazirani’s algorithm. To see this, one
observes that, just as in Grover’s algorithm, there is no
entanglement in c0 or c1, and there is none in c3, since
ja� is simply a tensor product of qubits each in state j0�
or j1�. However, c3 was obtained from c2 by a unitary
transformation acting on each of the n 1 1 qubits sepa-
rately. Such a unitary transformation cannot change the
entanglement of a state, so c2 must also be unentangled.

To summarize, any quantum algorithm in the usual
polylocal model for quantum computing can be rewritten
to have no entanglement at any time step, simply by
disregarding the tensor product structure of the Hilbert
space. Doing so physically incurs some exponential cost:
in energy, in measurement precision, or in the specifica-
tion of the required unitary transformations. One should
not, however, conclude that entanglement is required for
quantum-over-classical complexity reduction. Without
entanglement at any time step, Bernstein and Vazirani’s
quantum algorithm for sophisticated database search does
not just reduce the number of queries required classically
by a square root factor but does so all the way from n to 1.
Futhermore, we have shown for the first time that quantum
interference alone suffices to reduce the query complexity
of a problem within the standard model for quantum
computation. Since implementing the ga-controlled-NOT

“gate” with a subcircuit of local gates would introduce
entanglement at intermediate time steps, however, one
might conclude that counting queries (or, more generally,
nonlocal function calls) is a poor way to study the power
of quantum algorithms [26]. But it was Simon’s algorithm
[3] (which exponentially reduces the number of nonlocal
evaluations required to determine the period of a function)
that led to Shor’s quantum factoring algorithm [21], so
2016
it seems more productive to understand the quantum
search of a sophisticated database as demonstrating the
importance of interference and orthogonality, rather than
entanglement, in quantum algorithms. This perspective
may contribute to discovering the new algorithms neces-
sary for quantum computing to become more generally
useful.
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