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The clock synchronization problem is to determine the time difference D between two spatially sepa-
rated clocks. When message delivery times between the two clocks are uncertain, O�22n� classical
messages must be exchanged between the clocks to determine n digits of D. On the other hand, as we
show, there exists a quantum algorithm to obtain n digits of D while communicating only O�n� quantum
messages.

PACS numbers: 03.67.Lx, 03.67.Hk, 06.30.Ft
Clock synchronization is an important problem with
many practical and scientific applications [1,2]. Accurate
timekeeping is at the heart of many modern technolo-
gies, including navigation (the global positioning system),
electric power generation (synchronization of generators
feeding into national power grids), and telecommunication
(synchronous data transfers, financial transactions). Scien-
tifically, clock synchronization is key to projects such as
long baseline interferometry (distributed radio telescopes),
gravitational wave observation (LIGO), tests of the general
theory of relativity, and distributed computation.

The basic problem is easily formulated: determine the
time difference D between two spatially separated clocks,
using the minimum communication resources. Generally,
the accuracy to which D can be determined is a function
of the clock frequency stability, and the uncertainty in the
delivery times for messages sent between the two clocks.
Given the stability of present clocks, and assuming realis-
tic bounded uncertainties in the delivery times (e.g., satel-
lite to ground transmission delays), protocols have been
developed which presently allow determination of D to
accuracies better than 100 ns (even for clock separations
greater than 8000 km); it is also predicted that accuracies
of 100 ps should be achievable in the near future.

However, these protocols fail if the message delivery
time is too uncertain, because they rely upon the law of
large numbers to achieve a constant average delivery time
[thus, also requiring O�22n� messages to obtain n digits
of D]. If the required averaging time is longer than the
stability time of the local clocks, then these protocols must
be replaced. A simple, different, protocol, which succeeds
independent of the delivery time, is to just send a clock
which keeps track of the delivery time. For example, if
Alice mails Bob a wristwatch synchronized to her clock,
then when Bob receives it he can clearly calculate the D

for their two clocks from the difference between his time
and that given by the wristwatch.

This wristwatch protocol is generally impractical, but it
suggests another scheme which is intriguing. A quantum
bit (qubit) behaves naturally much like a small clock. For
example, a nuclear spin in a magnetic field precesses at a
frequency given by its gyromagnetic ratio times the mag-
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netic field strength. And an optical qubit, represented by
the presence or absence of a single photon in a given mode,
oscillates at the frequency of the electromagnetic carrier.
The relative phase between the j0� and j1� states of a qubit
thus keeps time, much like a clock, and ticks away during
transit. Unlike a classical clock, however, this phase infor-
mation is lost after measurement, since projection causes
the qubit to collapse onto either j0� or j1�, so repeated mea-
surements and many qubits are necessary to determine D.
On the other hand, with present technology it is practical
to communicate qubits over long distances through fibers
[3,4], and even in free space [5].

Here, we study this “ticking qubit” protocol for clock
synchronization, and establish an upper bound on the num-
ber of qubits which must be transmitted in order to deter-
mine D to a given accuracy. Surprisingly, we find that only
O�n� qubits are needed to obtain n bits of D, if we have
the freedom of sending qubits which tick at different fre-
quencies. We begin by describing a formal model for this
protocol, then the algorithm is presented. Various general-
izations and limitations are discussed in the conclusion.

Let ta and tb be the local times on Alice and Bob’s re-
spective clocks. We may assume for now, for the sake of
simplicity, that their clocks operate at exactly the same fre-
quency and are perfectly stable. Their goal is to determine
the difference D � tb 2 ta, which is initially unknown to
either of them. The goal can be accomplished using the
following primitive (which uses the Pauli operators X, Y ,
and Z, defined below).

Protocol: Ticking qubit handshake TQH�v, jc��.—
(1) At time ta

1 , Alice sends �ta
1 , jc�, v� to Bob. v speci-

fies the tick rate of the qubit jc�. (2) Bob receives
�ta

1 , eivt12Z jc�, v� at time tb
2 , where t12 is the time the

qubit spent in transit. (3) Bob applies the operation
C12 � Xe2iv�tb

2 2ta
1 �Z to the qubit, obtaining Xe2ivZDjc�.

(4) At time tb
4 , Bob sends �tb

4 , Xe2ivZDjc�, v� to Alice.
(5) Alice receives �tb

4 , eivt45ZXe2ivDZjc�, v� at time ta
5 ,

where t45 is the time the qubit spent in transit. (6) Alice
applies the operation C45 � Xe2iv�ta

5 2tb
4 �Z to the qubit,

obtaining e22ivZDjc�.
We use notation for quantum states and their transforms

that is standard in the quantum computation and quantum
© 2000 The American Physical Society



VOLUME 85, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 28 AUGUST 2000
information community; for an excellent review, see [6].
This can be summarized as follows. jc� is the state of a
qubit, which can be expressed as a two-component unit
vector

jc� � c0j0� 1 c1j1� �

∑
c0
c1

∏
, (1)

where c0 and c1 are complex numbers satisfying jc0j
2 1

jc1j
2 � 1. When measured, a 0 results, projecting the

qubit into the state j0� with probability jc0j
2; the corre-

sponding happens for 1. Operations on qubits are uni-
tary transformations U which are matrices that satisfy
UyU � I , Uy being the complex-conjugate transpose of
U and I the identity matrix. For single qubits, any 2 3 2
unitary transform may be written as a rotation operator,

eia1iu�nxX1nyY1nzZ��2, (2)

where a specifies a (usually irrelevant) global phase, X,
Y , and Z are the usual Pauli matrices,

X �

∑
0 1
1 0

∏
, Y �

∑
0 2i
i 0

∏
, Z �

∑
1 0
0 21

∏
,

(3)

n̂ � �nx , ny , nz�T is a unit real-component vector, and u is
the rotation angle. Note that X, Y , and Z themselves are
valid unitary operators; simple operations such as these are
often called quantum logic gates, and cascading them gives
a quantum circuit.

The six stages of the TQH�v, jc�� protocol work in the
following ways. v and jc� are inputs, as described in
Step 1; we will show below how they can be set usefully.
Step 2 follows from the time evolution of the qubit during
transit. A quantum state jc� evolves in time according to
the Schrödinger equation

2ih̄
d
dt

jc� � H jc� , (4)

where H is the (time-independent) Hamiltonian describ-
ing the physical configuration of the system. For example,
a spin-1�2 particle such as an electron or proton in a
magnetic field B has the Hamiltonian H � h̄vZ, where
h̄v is the energy difference between the state of the spin
aligned and antialigned with B. Many other quantum sys-
tems, such as a single photon propagating in space, can
have a Hamiltonian of this mathematical form. Plugging
this H into the solution to the Schrödinger equation,

jc�t�� � eiH t� h̄jc�t � 0�� , (5)

gives eivt12Z jc� after the elapsed time t12. Step 3 is true
because tb � ta 1 D, and t12 � tb

2 2 tb
1 � tb

2 2 ta
1 2

D, so C12eivt12Z jc� � e2ivZDjc�. During the time Bob
has the qubit, we assume he has turned off its evolution,
so that although tb

4 may not equal tb
2 , the qubit does not

experience any relative phase shift during that time inter-
val. Step 6 follows because t45 � ta

5 2 ta
4 � ta

5 2 tb
4 1

D, and XeiuZX � e2iuZ . To summarize, the net effect
of this protocol is to allow Alice to transform a qubit jc�
into e22ivZDjc�.
A simple, but inefficient, algorithm which allows Alice
to determine D uses repeated execution of the ticking qubit
handshake. She prepares jc� � �j0� 1 j1���

p
2, executes

TQH�v, jc��, and obtains

jc 0� �
e22ivD

p
2

j0� 1
e2ivD

p
2

j1� . (6)

She then applies a Hadamard transformation

H �
1
p

2

∑
1 1
1 21

∏
(7)

to jc 0�, getting

e22ivD 1 e2ivD

2
j0� 1

e22ivD 2 e2ivD

2
j1� , (8)

such that when she measures the state, a 0 results with
probability cos2�2vD�. By the law of large numbers, with
high probability, 22n repetitions of this procedure allows
Alice to estimate n bits of cos2�2vD�, and thus, of vD.
If bounds on the size of D are known in advance, v can
be chosen wisely to allow D to be determined; otherwise,
a few iterations of this procedure with different v suffice
to initially bound D.

This repetition procedure is inefficient because it re-
quires a number of repetitions exponential in the number of
desired digits. It is essentially a classical technique, and is
very similar in structure to the usual procedure employed
in metrology, Ramsey interferometry [7]. The prepara-
tion of jc� can be accomplished by applying a Hadamard
transformation to j0�; this corresponds to the first pulse in
the Ramsey scheme. Note, incidentally, that in practice,
Hadamard transforms can be replaced with simple p�2
pulses (operations such as eipY�4), although their intro-
duction here is convenient. The TQH step corresponds to
the free evolution period. And the final Hadamard is the
second pulse in Ramsey sequence. It is thus not surprising
that repetition is inefficient, since it has the same resource
requirements as in Ramsey interferometry.

A much better algorithm, which allows Alice to deter-
mine n bits of D using only O�n� repetitions of the ticking
qubit handshake, is the following. Alice starts with m 1 1
qubits initialized to jf0� � j0� j0�, where the decimal base
label on the left denotes the m qubit state, and the label on
the right, the extra ancillary single qubit. She then applies
m Hadamard gates to the m qubits, obtaining

jf1� �
1

p
2m

2m21X
k�0

jk� j0� . (9)

The first register is now in an equal superposition over
all possible states of the m qubits. Next, Alice applies
a unitary operation T which acts on the ancilla qubit,
performing

T jk� j0� � jk�e2pikvDj0� . (10)

This is a nontrivial operation, but assume for now that this
is possible, and below we will show how this is accom-
plished (in fact, the ancilla qubit is needed only for the
2007
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implementation of T , and we will drop it shortly). Apply-
ing T to jf1� gives

jf2� �
1

p
2m

2m21X
k�0

e2pikvDjk� j0� . (11)

Next, Alice applies an inverse quantum Fourier transform
F21, which acts on the first m qubits to perform

F21jk� �
1

p
2m

2m21X
j�0

e22pijk�2m

j j� . (12)

This operation requires only O�n2� elementary one- and
two-qubit gates [8] [in contrast to the classical fast Fourier
transform, which requires O�n2n� gates to transform a 2n

element vector]. This produces the state (dropping the final
j0�, which is now unimportant)

jf3� �
1

2m

2m21X
k�0

2m21X
j�0

e2pik�vD2j�2m�j j� �
2m21X
j�0

cjj j� .

(13)

jcjj
2 is clearly peaked around j � 2mvD. If 2mvD is an

integer, then this equality holds, jcjj
2 � dj,vD, and mea-

suring the first m qubits gives vD exactly. Otherwise, it
can be shown that if m � n 1 dlog�2 1 1�2e�e, then mea-
suring the m qubits gives vD to n bits of accuracy, with
probability of success at least 1 2 e [9,10].

What we have used in this algorithm is the well-known
ability of quantum computation to efficiently determine the
2008
eigenvalue of a unitary operator, for a given eigenstate, us-
ing a routine known as quantum phase estimation [9,10].
It is possible to use this subroutine in the present applica-
tion, clock synchronization, because there can be an effi-
cient implementation of the operator T .

Alice can implement T using m calls to TQH. One call
is made for each of the m qubits, so we can understand how
this works by considering what happens for the �th qubit.
Let c0j0� 1 c1j1� be the state of this qubit, so that we start
with the two-qubit state �c0j0� 1 c1j1�� j0�. Now apply a
controlled-NOT gate [11], whose transform is described by
the unitary matrix 2

664
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3
775 , (14)

with the control qubit being the first one. The result is
c0j00� 1 c1j11�. Note how the two qubits are now en-
tangled—this is partially reflected by the fact that if a
measurement were performed at this moment on one qubit,
the result would completely determine the state of the other
qubit. Let jc� represent the state of the second qubit; Alice
sends this to Bob, performing TQH�p2�21v, jc��, Upon
completion of that procedure, she is left with the state

c0e22�pivD�2j00� 1 c1e2�pivD�2j11� . (15)

She then performs a second controlled-NOT gate, again
with the first qubit as the control, obtaining
�c0e22�pivD�2j0� 1 c1e2�pivD�2j1�� j0� � e22�pivD�2
1X

k��0

ck�
jk��e2�pik�vDj0� . (16)
The e22�ivD�2 global phase is unobservable, and thus ir-
relevant to the present calculation and can be dropped. The
overall operation T� accomplished on this �th qubit can
thus be expressed as T�jk�� j0� � jk��e2�pik�vDj0�, where
jk�� represents the �th qubit. Now, the overall state jk� of
the m qubits can be written as jk� � jk0� jk1� · · · jkm21�, so
applying T � T0T1 · · · Tm21 gives

T jk� j0� � �T0jk0�T1jk1� · · · Tm21jkm21�� j0�

� jk�e2pivD�
P

�
2�k��

j0� . (17)

Since
P

� 2�k� � k, this construction gives the desired
transformation, Eq. (10). Note that the m calls to TQH
can be performed sequentially (as shown in Fig. 1), or, by
using m ancilla qubits initialized to j0�, in parallel, since
the algorithm leaves them unchanged.

The main caveat to this result is that the tick rate of the
qubit jc� sent to Bob must span an exponentially large
range, from �1�2D to �2m�D. If the qubit transmitted
in the TQH routine is physically realized by a spin in a
magnetic field, this means that there must be “dial settings”
for the magnetic field strength which span an exponentially
large range. Similarly, if the qubit is represented by a
single photon, its carrier must span an exponentially large
frequency range. Most critically of all, the stability of the
tick rate must be adequate; fluctuations of the magnetic
field or index of refraction should be controlled to cause
less than roughly a half-wavelength phase shift.

On the other hand, in principle, if it is possible to
use a nonlinear optical medium to transport photons be-
tween Alice and Bob, then collective photon states whose

FIG. 1. Quantum circuit describing the exponentially fast
clock synchronization algorithm. The boxed 2� gates represent
calls to TQH�p2�21v, jc��; otherwise, the notation used is
standard [11]. Time goes from left to right, and meters denote
projective measurement.
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effective wavelengths can be exponentially short [12] could
be used to represent qubits. Furthermore, the shortest
wavelength required by the protocol corresponds to the in-
verse of the accuracy to which D is desired; this means that
optical wavelengths roughly correspond to accuracies of
fractions of femtoseconds. Time transfer using ground to
satellite laser links is under development [13], and photons
of other wavelengths, ranging from kilometers to millime-
ters, are also experimentally feasible. The quantum Fourier
transform used in the quantum clock synchronization algo-
rithm is also known to be relatively stable to perturbations
[14], and the entire procedure can be further stabilized by
using quantum error correction techniques [15–18].

The quantum algorithm we have described allows two
clocks to be synchronized, independent of the uncertain-
ties in message transport time between the clocks, so long
as messages are delivered within the local stability time
of the clocks. In its simplest instance, 22n ticking qubit
communication steps are required to obtain the time dif-
ference D to O�n� bits of accuracy. Aside from exponen-
tial time, this does not require any demanding physical
resources—just the ability to communicate qubits. In
the advanced form of the algorithm, only n ticking qubit
communication steps are required to obtain O�n� bits of
D, but this procedure requires exponentially demanding
physical resources. These results invite further considera-
tion of the problem of clock synchronization with the as-
sistance of quantum resources. The present protocols can
be simplified to use only one-way communication and no
distributed entanglement (these results will be reported in
detail elsewhere). It may also be possible to utilize quan-
tum teleportation [19] in a nontrivial manner, but that must
be done carefully, since changing the physical form of the
qubits usually changes their tick rate (and the two required
classical bits do not tick; this is not apparently compen-
sated by the use of EPR pairs). Clock synchronization is
also clearly related to precision measurement problems, for
which quantum resources are known to be useful [20].

We thank Daniel Gottesman and David DiVincenzo for
helpful discussions.
Note added.—During the preparation of this manu-
script, the author became aware of similar work by Jozsa
et al. [21], who arrive at a different algorithm.
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